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2 2 SOME ELEMENTARY LOGIC

2 Some Elementary Logic

Problem 2.1

1.

p q p⇒ q ¬p ¬q ¬q ⇒ ¬p ¬p ∨ q p ∧ ¬q ¬(p ∧ ¬q)
T T T F F T T F T
T F F F T F F T F
F T T T F T T F T
F F T T T T T F T

2.

p q p ∨ q ¬p ¬q ¬p ∧ ¬p ¬(¬p ∧ ¬p)
T T T F F F T
T F T F T F T
F T T T F F T
F F F T T T F

3.

p q p ∧ q ¬(p ∧ q) p ∨ q ¬p ¬q (¬p) ∨ (¬q)
T T T F T F F F
T F F T T F T T
F T F T T T F T
F F F T F T T T

4.

p q p⇒ q q ⇒ p (p⇒ q) ∧ (q ⇒ p) p⇔ q

T T T T T T
T F F T F F
F T T F F F
F F T T T T

5.

p q p⇒ q ¬(p⇒ q) ¬q p ∧ ¬q
T T T F F F
T F F T T T
F T T F F F
F F T F T F

Problem 2.2 Suppose p is the greatest prime. Let q be the product of
all primes ≤ p, i.e. q is the product of all primes.

If q + 1 is not prime then it must be divisible by some prime p∗, say.
But q is divisible by p∗ and so q + 1 leaves a remainder 1 when divided by
p∗. Hence q + 1 is prime, but since q + 1 > p we have a contradiction to
the assumption p is the greatest prime.

Thus there is no greatest prime.

Problem 2.3
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1. (a) ∀x (x ∈ Q⇒ x2 ∈ Q) 1 or
∀x ∈ Q (x2 ∈ Q).

(b) ∃x such that (x ∈ Q ∧ x2 6∈ Q) or
∃x ∈ Q such that (x2 6∈ Q). 2

(c) There is a rational number whose square is irrational.

2. (a) ¬∃x such that
(
(x is an elephant) ∧ (x can stand the sight of a mouse)

)
.

(b) ∃x such that
(
(x is an elephant) ∧ (x can stand the sight of a mouse)

)
.

(c) There is an elephant which can stand the sight of a mouse.

Comments

1. Quantifiers should generally precede the statements to which they
refer, as otherwise the result will usually be ambiguous. For example,
do not write a statement such as:

∃y such that (y > x) ∀x (1)

or
∃y such that (y > all x). (2)

Does this mean
∃y such that ∀x (y > x) ? (3)

or
∀x∃y such that (y > x) ? (4)

Note that (3) is false in R and that (4) is true in R. You should
always use either (3) or (4) (depending on the intended meaning),
and not (1) or (2).

2. The statement

∃x such that (x is a rational) ∧ ¬ (x2 is a rational)

is also ambiguous. More generally,

∃x such that P (x) ∧Q(x),

is ambiguous. It could mean either(
∃x such that P (x)

)
∧Q(x)

or
∃x such that

(
P (x) ∧Q(x)

)
.

1It is implicit from the context of this Question that the quantifiers ∀ and ∃ range over
the set of real numbers, unless otherwise specified.

2We sometimes omit the words “such that” after the symbol ∃. In the present situation
we could also write ∃x (x ∈ Q ∧ x2 6∈ Q) or ∃x ∈ Q (x2 6∈ Q).
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These have different meanings. In particular, the first has exactly the
same meaning as (

∃y such that P (y)
)
∧Q(x),

and its truth or falsity may change with the value of x in Q(x). The
second has exactly the same meaning as

∃y such that
(
P (y) ∧Q(y)

)
.

Problem 2.4

Proof: Let n = k(k+1)
2 .

1. Let k = 6p. Then

n = 3p(6p+ 1) = 3
(
p(6p+ 1)

)
and so the remainder after division by 3 is 0.

2. Let k = 6p− 1. Then

n = (6p− 1)3p = 3(6p− 1)p

and so the remainder after division by 3 is 0.

3. Let k = 6p− 2. Then

n = (3p− 1)(6p− 1) = 18p2 − 9p+ 1 = 3(6p2 − 3p) + 1

and so the remainder after division by 3 is 1.

4. Let k = 6p− 3. Then

n = (6p− 3)(3p− 1) = 3(2p− 1)(3p− 1)

and so the remainder after division by 3 is 0.

5. Let k = 6p− 4. Then

n = (3p− 2)(6p− 3) = 3(3p− 2)(2p− 1)

and so the remainder after division by 3 is 0.

6. Let k = 6p− 5. Then

n = (6p− 5)(3p− 2) = 18p2 − 27p+ 10 = 3(6p2 − 9p+ 3) + 1

and so the remainder after division by 3 is 1.

This takes care of all possible cases.
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The following diagram indicates why numbers of the form k(k+1)
2 are

called triangular.

Comment Note that 6
4 = 3

2, but the remainder after division in each case
is not the same.

Problem 2.5

1. Definition A function f :A (⊂ R)→ R is uniformly continuous if3

∀ε>0 ∃δ>0 such that
(
∀x∈A ∀y∈A

(
|x−y| < δ ⇒ |f(x)−f(y)| < ε

))
.

2. (a) A function f :A (⊂ R)→ R is not uniformly continuous iff:
there is an ε>0 such that for each δ>0 there exist x, y ∈ A for
which |x− y| < δ and |f(x)− f(y)| ≥ ε.

(b) A function f :A (⊂ R)→ R is not uniformly continuous iff:

∃ε>0 such that ∀δ>0
∃x∈A and ∃y∈A for which

(
|x− y| < δ ∧ |f(x)− f(y)| ≥ ε

)
,

or more concisely

∃ε>0 ∀δ>0
(
∃x∈A ∃y∈A

(
|x− y| < δ ∧ |f(x)− f(y)| ≥ ε

))
.

3. Let f(x) = 1/x for x ∈ (0, 1). Then f is not uniformly continuous
on (0, 1).

Proof: We will show that 2(a) and 2(b) are true by taking ε = 1.

For each δ > 0 we can certainly choose x, y ∈ (0, 1) such that |x−y| <
δ and |1/x−1/y| ≥ 1. For example, if 0 < δ < 1 let x = δ and y = δ/2,
and if δ ≥ 1 let x = 1/2 and y = 1/4. It follows from either 2(a) or
2(b) that f is not uniformly continuous.

Comments
3Recall that in a definition it is conventional to write if when more precisely one should

write if and only if.
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1. The order of the quantifiers is critical. It does not change the mean-
ing if two consecutive universal quantifiers are reversed (e.g. ∀x∀y is
replaced by ∀y∀x) or if two consecutive existential quantifiers are re-
versed (e.g. ∃x∃y is replaced by ∃y∃x). But it is incorect to replace
∀x∃y by ∃y∀x or to replace ∃y∀x by ∀x∃y.

2. Do not omit ∃x ∈ A and ∃y ∈ A in 2(b). If they are omitted, the
convention is that universal quantifiers are intended.

3. You should not even omit ∀x ∈ A and ∀y ∈ A in 1. If you do, the
convention is that universal quantifiers are intended. But it would
still not be clear if the intended meaning is

∀ε>0 ∃δ>0 such that
(
∀x∈A ∀y∈A

(
|x−y| < δ ⇒ |f(x)−f(y)| < ε

))
or

∀x∈A ∀y∈A ∀ε>0 ∃δ>0 such that
(
|x−y| < δ ⇒ |f(x)−f(y)| < ε

)
.

The second does not give a correct definition of uniform continu-
ity.(Why? )

A common mistake is to omit the universal quantifiers and then ended
up in 2 with the assertion that a function f : A (⊂ R) → R is not
uniformly continuous iff:

∃ε>0 ∀δ>0
(
|x− y| < δ ∧ |f(x)− f(y)| ≥ ε

)
.

This is incorrect, as noted in 2.

Problem 2.6 1. Definition Suppose f1, f2, . . . , fn, . . . is a sequence of
functions such that fn : [0, 1]→ R for all n. Suppose that f : [0, 1]→ R.
Then the sequence (fn)∞n=1 converges to f uniformly if

∀ ε > 0 ∃N such that
(
n ≥ N ⇒ ∀x ∈ [0, 1] (|fn(x)− f(x)| < ε)

)
.

Note: one usually omits “such that”, and it is understood from con-
text that n and N are integers.

2. Let

fn(x) =


0 if 0 ≤ x ≤ 1/2− 1/n ,
1− n(1/2− x) if 1/2− 1/n < x < 1/2,
1 if 1/2 ≤ x ≤ 1.

Draw a diagram!

(a) If 0 ≤ x < 1/2 then fn(x) = f(x) provided n is sufficiently large,
i.e. provided x ≤ 1/2 − 1/n, i.e. provided n > 2/(1 − 2x)4, and
so certainly fn(x) → f(x) for such x. Note that the closer x is
to 1/2, the larger we need to take n, so there is no “uniform”
choice of n for all x ∈ [0, 1/2).

4Since x ≤ 1/2−1/n iff 2nx ≤ n−2 iff 2 ≤ n(1−2x) iff n ≥ 2/(1−2x) (as 0 ≤ x < 1/2
and so 1− 2x > 0).
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(b) If 1/2 ≤ x ≤ 1 then fn(x) = f(x) = 1 for all n and so again
fn(x)→ f(x) for such x.

Thus we see that the sequence (fn)∞n=1 converges to f pointwise, but
not uniformly .

3. (a) Definition Suppose f1, f2, . . . , fn, . . . is a sequence of functions
such that fn : [0, 1] → R for all n. Suppose that f : [0, 1] → R.
Then the sequence (fn)∞n=1 converges to f pointwise if

for all x ∈ [0, 1] and for every ε > 0 there exists N such
that n ≥ N implies |fn(x)− f(x)| < ε.

(b) Definition Suppose f1, f2, . . . , fn, . . . is a sequence of functions
such that fn : [0, 1] → R for all n. Suppose that f : [0, 1] → R.
Then the sequence (fn)∞n=1 converges to f pointwise if

∀x ∈ [0, 1] ∀ ε > 0 ∃N such that
(
n ≥ N ⇒ |fn(x)−f(x)| < ε

)
.

Note: one again usually omits “such that”.

Remarks on Solutions

1. It is also correct in 2. to write

∀ ε > 0 ∃N such that ∀x ∈ [0, 1]
(
n ≥ N ⇒ |fn(x)− f(x)| < ε

)
.

2. Important : an even more complete version of 2. would be to insert
the implicit quatifier for n and write

∀ ε > 0 ∃N such that ∀x ∈ [0, 1] ∀n
(
n ≥ N ⇒ |fn(x)−f(x)| < ε

)
,

or equivalently

∀ ε > 0 ∃N such that ∀x ∈ [0, 1] ∀n ≥ N
(
|fn(x)− f(x)| < ε

)
.

It is essential that all quantifiers be included in this way if one is to
obtain the negation of this statement correctly; i.e.

∃ ε > 0 s.t. ∀N ∃x ∈ [0, 1] ∃n s.t. ¬
(
n ≥ N ⇒ |fn(x)− f(x)| < ε

)
.

or equivalently

∃ ε > 0 s.t. ∀N ∃x ∈ [0, 1] ∃n s.t.
(
n ≥ N ∧ |fn(x)− f(x)| ≥ ε

)
,

or

∃ ε > 0 s.t. ∀N ∃x ∈ [0, 1] ∃n ≥ N s.t.
(
|fn(x)− f(x)| ≥ ε

)
.
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3 The Real Number System

Problem 3.1 Since a + b ≤ supA + supB for all a ∈ A and b ∈ B, i.e.
c ≤ supA+ supB for all c ∈ C; it follows supA+ supB is an upper bound
for C. Hence

supC ≤ supA+ supB, (5)

since supC is the least upper bound.

Next suppose ε > 0. Then there exists a ∈ A such that a ≥ supA − ε
and there exists b ∈ B such that b ≥ supB − ε. Hence

a+ b ≥ supA+ supB − 2ε.

But a+ b ∈ C, and so
supC ≥ a+ b.

It follows that
supC ≥ supA+ supB − 2ε.

Since ε > 0 is otherwise arbitrary, it follows that

supC ≥ supA+ supB.

Hence, using (5),
supC = supA+ supB.

Problem 3.2 Let

M = sup
x∈[a,b]

f(x), K = sup
x∈[a,b]

g(x).

Then
f(x) ≤M and g(x) ≤ K ∀x ∈ [a, b].

Hence
f(x) + g(x) ≤M +K ∀x ∈ [a, b];

i.e., M + K is an upper bound for S =
{
f(x) + g(x) : x ∈ [a, b]

}
. Since

supx∈[a,b]

(
f(x) + g(x)

)
is the least upper bound for S, it follows

sup
x∈[a,b]

(
f(x) + g(x)

)
≤M +K,

as required.

A simple counterexample to equality is given by f(x) = x and g(x) =
1− x for x ∈ [0, 1]. Then f(x) + g(x) = 1. The sup for all three functions
is 1.
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Comment It is not necessarily true that supx∈[a,b] f(x) equals f(x) for
some x ∈ [a, b]. For example, let

f(x) =
{
−|x| x ∈ [−1, ]\{0}
−1 x = 0

Problem 3.3 First note that

a−1a = aa−1

= 1

by the commutative axiom for multiplication and the multiplicative
inverse axiom. Thus

a−1a = aa−1 = 1. (6)

Similarly
1a = a1 = a (7)

by the commutative axiom for multiplication and the multiplicative
identity axiom.

(a)i. One has

a(ba−1) = (ba−1)a commutative axiom for multiplication
= b(a−1a) associative axiom for multiplication
= b1 from (6)
= b from (7).

Hence ax = b if x = ba−1.
ii. We need to show that ba−1 is the only value of x such that

ax = b. In other words, we need to deduce from the assump-
tion ax = b that x = ba−1. So assume a 6= 0 and ax = b.
Then
a−1(ax) = a−1b “=” means “is the same object as”
⇒ (a−1a)x = a−1b assoc. axiom for multiplication
⇒ 1x = a−1b from (6)
⇒ x = a−1b from (7)
⇒ x = ba−1 commutative axiom for multiplication

Thus we have shown that there exists one, and only one, number
x such that ax = b. Moreover, x = ba−1.

(b) a(0+0) = a 0 since 0+0 = 0 from the additive identity axiom
⇒ a0 + a0 = a0 distributive axiom
⇒ (a0 + a0) +−(a0) = a0 +−(a0)
⇒ a0 + (a0 +−(a0)) = a0 + −(a0) associative axiom for
addition
⇒ a0 + 0 = 0 additive inverse axiom applied twice
⇒ a0 = 0 additive identity axiom
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Problem 3.4 Let α = supA and β = inf B. (We assume A,B 6=
∅. Note that we may have inf B = 0, in which case we interpret
supA/ inf B as +∞.)

Any c ∈ C can be written as c = a/b where a ∈ A and b ∈ B. Since
a ≤ α and b ≥ β, it follows that c = a/b ≤ α/β.5 Hence α/β is an
upper bound for C. Hence

supC ≤ α/β, (8)

since supC is the least upper bound.

Next suppose ε > 0. Then6 there exist a ∈ A such that a ≥ α− ε and
there exists b ∈ B such that b ≤ β + ε. Hence

a

b
≥ α− ε
β + ε

. (9)

Given δ > 0, it is possible to choose ε > 0 so that

α− ε
β + ε

≥ α

β
− δ. (10)

(
This is clear. More precisely, a calculation shows it is

sufficient to choose

ε ≤ βδ

α+ β − δβ ,

provided α + β − δβ > 0. But this latter condition is true
provided δ < α+β

β
, and if (10) is true for some δ < α+β

β
it is

certainly true for all larger δ.
)

Hence given δ > 0, it follows from (9) and (10) that there exists c ∈ C
for which

c ≥ α

β
− δ.

Hence
supC ≥ α

β
− δ.

Since δ > 0 is otherwise arbitrary, it follows that

supC ≥ α

β
.

Hence, using (8),

supC =
supA
inf B

.

5You may assume the usual algebraic properties of “<”, “≤”, etc. in this question.
6From the definition of “sup” we have (i) a ≤ supA for all a ∈ A, and (ii) for each

ε > 0 there exists a ∈ A such that a ≥ supA − ε. Moreover, supA is the unique real
number with these two properties. This is a useful fact that you should remember, and
which we use in this problem.
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Problem 3.5 1. From the comments at the beginning of the question,
−(−a) is uniquely determined by the property

(−a) + (−(−a)) = 0.

But we also have

(−a) + a = a+ (−a) commutative axiom for addition
= 0 additive inverse axiom.

Hence −(−a) = a.

2. From the comments at the beginning of the question, −x is uniquely
determined by the property

x+ (−x) = 0.

But we also have

x+ (−1)x = x.1 + (−1)x multiplicative identity axiom
= x.1 + x(−1) commutative axiom for multiplication
= x(1 + (−1)) distributive axiom
= x.0 additive inverse axiom
= 0 earlier problem.

Hence (−1)x = −x.

3. From the comments at the beginning of the question, −(ab) is uniquely
determined by the property

ab+ (−(ab)) = 0.

But we also have

ab+ a(−b) = a(b+ (−b)) distributive axiom
= a0 additive inverse axiom
= 0 earlier problem.

Hence a(−b) = −(ab).

Also

ab+ (−a)b = ba+ b(−a) commutative axiom twice
= b(a+ (−a)) distributive axiom
= b0 additive inverse axiom
= 0 earlier problem.

Hence −(ab) = (−a)b.
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Problem 3.6 1. We have that α is the least real number such that
α ≥ a for all a ∈ A. So if α ∈ A it must be the maximum element of
A. Conversely if there is a maximum element β ∈ A, then certainly β
is an upper bound for A and no lesser number can be, so β = supA.

2. Suppose that α 6∈ A, and that ε > 0 is such that there are only finitely
many elements of A greater than α − ε, say a1, . . . , ak. The largest
of these, say, aj, is clearly an upperbound for A, yet cannot equal α
since α 6∈ A. This contradiction shows no such ε exists.

Comment Alternatively, one can argue inductively that for each n ∈ N,
there is an ∈ A with an > α−1/n, and an > aj for 1 ≤ j < n. Then for any
ε > 0, 1/n < ε for n > N and so the infinite set (an)n N lies in A∩(α−ε, α).
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4 Set Theory

Problem 4.1 Since S = Q × Q and Q is countable, it follows that S is
countable from Theorem 4.9.1.

Problem 4.2 The map S 7→ f , where

f(x) =
{

1 if x ∈ S
0 if x 6∈ S

defines a one-one map from P[a, b] into F [a, b]. Thus the cardinality of
F [a, b] is ≥ the cardinality of P[a, b], which as we saw in Theorem 4.10.4 is
> c.

NOTE: One can show that P[a, b] and F [a, b] have the same cardinality.

Problem 4.3 Let (a1, a2, . . .) and (b1, b2, . . .) be enumerations of A and B
respectively.

1. If A and B are disjoint then

a1, b1, a2, b2, . . .

is an enumeration of A ∪B.

2. If A ∩ B 6= ∅ then let c1, c2, . . . be an enumeration of C = B \ A
(obtained by proceeding through the enumeration of B and only including
terms in B which are not also in A). This enumeration may terminate (i.e.
B \A is finite) or may not terminate (i.e. B \A is not finite).

Then A∪B = A∪C, but A and C are disjoint. We can thus enumerate
A ∪ C as in (a), with an easy modification in case C is finite.

Problem 4.4 Let Af be the family of all finite subsets of A. Let An be
the family of all subsets of cardinality n (where n is any natural number),
i.e. the family of all subsets of A with exactly n members.

Then
Af = {∅} ∪A1 ∪A2 ∪ · · · .

Thus to prove Af is countable it is sufficient by Theorem 4.9.1(3) to prove
that A1, A2, . . . are countable.

Let
a1, a2, . . .

be an enumeration of A. Then

{a1}, {a2}, . . .

is an enumeration of A1.
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To see that A2 is countable, note that there is a one-one map from A2

into A×A given by {ai, aj} is mapped to (ap, aq) where p is the minimum of
i and j, and q is the other index (e.g. {a3, a5} = {a5, a3} maps to (a3, a5)).
Since A×A is countable by Theorem 4.9.1(2), it follows A2 is countable by
Proposition 4.5.2 .

Similarly there is a one-one map from A3 into A×A×A, obtained from
arranging the indices of the members of {ai, aj, ak} in increasing order. But
A×A×A is countable by two applications of Theorem 4.9.1(2)7

Similarly An is countable for any integer n.

It now follows from Theorem 4.9.1(3) that Af is countable, and hence
is denumerable as it is certainly not finite.

Problem 4.5 Without loss of generality we may take the denumerable set
to be N.

There is a one-one correspondence between the set S1 of all subsets of
N and the set S2 of all sequences of the form

a1, a2, a3, . . . (11)

where every ai is either 0 or 1. Namely, if A ∈ S1 then the corresponding
sequence (11) is given by a1 = 0, 1 according as 1 6∈ A, 1 ∈ A; a2 = 0, 1
according as 2 6∈ A, 2 ∈ A; a3 = 0, 1 according as 3 6∈ A, 3 ∈ A; etc. Hence
S1 and S2 have the same cardnality.

Claim: The set S2 has cardinality c.

To see this first note that every real number in [0, 1] corresponds to a
member of S2 by taking its binary expansion, i.e. expansion to base 2. The
map is

·a1a2a3 . . . 7→ (a1, a2, a3, . . .).

If there is more than one expansion, which occurs only for numbers of the
form

·a1a2a3 . . . an1000 . . . = ·a1a2a3 . . . an0111 . . . ,

we take the expansion ending in zeros. This gives a one-one map from [0, 1]
into S2.

One simple way of getting a one-one map from S2 into [0, 1] is to use
the usual decimal expansions to base 10 and take the map

(a1, a2, a3, . . .) 7→ ·a1a2a3.

This is one-one (but not of course onto).

7Remark: For any sets A, B and C there is a one-one correspondence between A ×
B×C and (A×B)×C, namely (a, b, c)↔ ((a, b), c). If A, B and C are all countable then
A × B is countable by Theorem 4.9.1(2) and then (A × B) × C is countable by another
application of Theorem 4.9.1(2). By the one-one correspondence it follows that A×B×C
is also countable.
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Thus by Schröder-Bernstein the claim follows. Hence S1 also has cardi-
nality c.

Problem 4.6 1. We are given that A has cardinality c and B ⊂ A is
denumerable. Let B′ be a denumerable subset of A \B.

To construct B′ first choose

x1 ∈ A \B,

then choose
x2 ∈ A \ (B ∪ {x1}),

then choose
x3 ∈ A \ (B ∪ {x1, x2}),

etc. This is always possible, as otherwise A is the union of
two countable sets B and {x1, . . . , xn} (for some n) and so
is countable. Now let B′ = {x1, x2, . . .}.

Since B and B′ are denumerable, so is B ∪B′ by Problem 4.3, and so
there is a one-one correspondence between B′ and B ∪ B′. Together
with the identity one-one correspondence between A \ B′ and itself,
this gives a one-one correspondence between A1 and A.

2. Since the set of irrationals is R \Q, the result follows from 1.

Problem 4.7 Let S be the set of all finite tuples of integers (a0, . . . , an)
for any natural number n. If α = (a0, . . . , an) let Aα be the set of real
algebraic numbers which are solutions of a0 + a1x

2 + · · ·+ anx
n = 0. There

can be at most n solutions8 and so the cardinality of Aα is at most n, and
is certainly countable.

8Prove this by induction on n. If n = 1 it is clearly true. Assume the result for
n = k. If λ is a solution of Q(x) := a0 + a1x

2 + · · · + ak+1x
k+1 = 0 then the remainder

after dividing Q(x) by x − λ must be zero and so Q(x) = (x − λ)P (x) where P (x) is a
polynomial of degree k. Every solution of Q(x) = 0 other than x = λ must thus be a
solution of P (x) = 0. It follows from the inductive hypothesis that there can be at most
k + 1 solutions of Q(x) = 0.
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If A is the set of all real algebraic numbers, then A =
⋃
α∈S Aα. Now

S is countable by repeated applications of Theorem 4.9.1(1) of the Notes.
Hence A is countable by Theorem 4.9.1(3). But A is certainly not finite (it
contains the integers) and so must be denumerable.

Note The same result and proof shows that the set of all algebraic num-
bers (including the complex ones) is denumerable.

Problem 4.8 1. The set of all integer multiples of 5 is the set

A = {. . . ,−15,−10,−5, 0, 5, 10, 15, . . .}.

This is in one-one corrrespondence with the set Z via the map

5n↔ n.

Since we already know Z is denumerable, it follows that A is denu-
merable.

2. Since A is denumerable, we can write

A = {a1, a2, a3, . . .}.

We can also write
B = {b1, . . . , bn}

for some natural number n (unless B = ∅, in which case the result is
trivial).

Since A and B are disjoint,

A ∪B = {b1, . . . , bn, a1, a2, . . .}.

This immediately gives an enumeration of A ∪ B, i.e. a one-one cor-
respondence with N, via the map

f(1) = b1, f(2) = b2, . . . , f(n) = bn, f(n+1) = a1, f(n+2) = a2, . . . .

Thus A ∪B is denumerable.

3. If A and B are not necessarily disjoint, then let C = B \A.9 It follows
that A ∪ C = A ∪ B. But A and C are disjoint, and C is finite, and
so A ∪ C is denumerable by part 2.

4. The set of all complex numbers of the form a+ bi, where a and b are
rational, is equivalent to the set Q×Q via the map

a+ bi↔ (a, b).

Since Q×Q is a product of denumerable sets, it is denumerable. This
give the result.

9i.e. C consists of those elements of B not in A.
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Comments

1. Remember that integers can be either positive or negative, whereas
the natural numbers are 1, 2, 3, . . ..

2. The set of all complex numbers of the form a+ bi, where a and b are
rational, is not the same as the set Q×Q; it is equivalent to the set
Q×Q.

3. Do not write A/B for A\B. The first notation has a different meaning
and, for example, in the theory of vector spaces is used to denote a
certain “quotient space”.

Problem 4.9 Since f1 :A → B is one-one, A ≤ B from the definition of
≤. Since f2 :A→ B is onto, B ≤ A by Theorem 4.8.4. It follows from the
Schröder-Bernstein theorem that A = B.

Comment In the proof the Schröder-Bernstein theorem is needed. Since
this is a deep and non-obvious result, you should explicitly note it in your
proof.

Problem 4.10 1. First suppose that x ∈ A ∪ (B ∩ C). Then x ∈ A
or 10 x ∈ B ∩ C. In the first case it follows that x ∈ A ∪ B and
x ∈ A ∪ C, and so x ∈ (A ∪ B) ∩ (A ∪ C). In the second case x ∈ B
and x ∈ C, and so in particular x ∈ A∪B and x ∈ A∪C, and hence
x ∈ (A ∪B) ∩ (A ∪ C).

2. (a) We first prove

f−1[U ∪ V ] = f−1[U ] ∪ f−1[V ].

Suppose that x ∈ f−1[U ∪ V ]. This means f(x) ∈ U ∪ V . Hence
f(x) ∈ U or f(x) ∈ V , i.e. x ∈ f−1[U ] or x ∈ f−1[V ], and so
x ∈ f−1[U ] ∪ f−1[V ].
Conversely, suppose x ∈ f−1[U ] ∪ f−1[V ]. Hence x ∈ f−1[U ] or
x ∈ f−1[V ], i.e. f(x) ∈ U or f(x) ∈ V . Hence f(x) ∈ U ∪ V , i.e.
x ∈ f−1[U ∪ V ].

(b) We next prove

f−1
[⋃
λ∈J

Uλ
]

=
⋃
λ∈J

f−1 [Uλ] .

(The proof is essentially the same as for the previous case, and
you should carefully note the similarities.)

10As always in mathematics, or includes the possibility that both alternatives are true.
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Suppose x ∈ f−1
[⋃

λ∈J Uλ
]
. This means f(x) ∈ ⋃λ∈J Uλ. Hence

f(x) ∈ Uλ for some (i.e. at least one) λ ∈ J , i.e. x ∈ f−1 [Uλ] for
the same λ ∈ J , and so x ∈ ⋃λ∈J f−1 [Uλ].
Conversely, suppose x ∈ ⋃

λ∈J f
−1 [Uλ]. Hence x ∈ f−1 [Uλ] for

some λ ∈ J , i.e. f(x) ∈ Uλ for some λ ∈ J . Hence f(x) ∈⋃
λ∈J Uλ, i.e. x ∈ f−1

[⋃
λ∈J Uλ

]
.

3. (a) We first prove
f [C ∩D] ⊂ f [C] ∩ f [D].

To do this, suppose y ∈ f [C ∩ D]. This means y = f(x) for
some x ∈ C ∩D. In particular, x ∈ C and so y

(
= f(x)

)
∈ f [C].

Similarly, x ∈ D and so y
(
= f(x)

)
∈ f [D]. It follows that

y ∈ f [C] ∩ f [D]. This proves the result.

(b) We next prove
f
[⋂
λ∈J

Cλ

]
⊂
⋂
λ∈J

f [Cλ] .

(The proof is essentially the same as for the previous case, and
you should carefully note the similarities.)
To do this, suppose y ∈ f

[⋂
λ∈J Cλ

]
. This means y = f(x) for

some x ∈ ⋂λ∈J Cλ. Hence x ∈ Cλ for every λ ∈ J and so y
(
=

f(x)
)
∈ f [Cλ] for every λ ∈ J . It follows that y ∈ ⋂λ∈J f [Cλ].

This proves the result.

4. Let f : A → B, where A = {a, b, c} and B = {x, y}, be given by
f(a) = x, f(b) = y and f(c) = x. Let C = {a, b} and D = {b, c}.
Then f [C ∩D] = {y} and f [C] ∩ f [D] = B.

Comments

1. It does not make any sense to “use induction on J” in part 2. First
of all, J need not be countable. And even if J were denumerable,
induction is still of no use. Using induction could only help us to
prove the result for J being of arbitrary finite cardinality.

2. The inverse function f−1 may not exist; and your proof should not
assume that it does exist.

3. It is logically incorrect in 2. to say:

Suppose f(x) ∈ f [C ∩D]. Then x ∈ C ∩D.

It is true that “any member of f [C ∩D] can be written in the form
f(x) for some x ∈ C ∩D”. But this is not logically equivalent to “if
f(x) ∈ f [C ∩ D] then x ∈ C ∩ D”. (In fact the second statement
may be false. If we modify the example in 3 so that f(a) = y, then
f(a) ∈ f [C ∩D] but a 6∈ C ∩D.)
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Problem 4.11 1. Note: If a = 1 then we only define limx→a− f(x),
while if a = 0 then we only define limx→a− f(x).

(a) First suppose a ∈ (0, 1] and define

α = sup{f(x) : x ∈ [0, a)}.

Note that the sup does exist, since {f(x) : x < a} is bounded above
by f(a) (as f is increasing). We claim that limx→a− f(x) exists and
equals α.

Suppose ε > 0. From the definition of sup there exists x ∈ [0, a) such
that

α− ε < f(x) ≤ α. (12)

Let x0 be one such x. Since f is increasing, it follows that (12) is true
for all x ∈ [x0, a). It follows from the definition of limx→a− f(x) that
limx→a− f(x) = α.

Similarly, if a ∈ [0, 1), by considering β = inf{f(x) : x ∈ (a, 1]} it
follows that limx→a+ f(x) = β.

(b) Suppose 0 < x1 < x2 < . . . < xn < 1. Then

f(0) ≤ lim
x→x1

−
f(x) ≤ lim

x→x1
+
f(x) ≤ lim

x→x2
−
f(x) ≤ lim

x→x2
+
f(x)

≤ . . . ≤ lim
x→xn−

f(x) ≤ lim
x→xn+

f(x) ≤ f(1). (13)

(This is easy to see. For example, choose a ∈ (x1, x2). Then since f
is increasing, it follows that limx→x1

+ f(x) ≤ f(a) ≤ limx→x2
− f(x).)



10 x1 x2 x3

20 4 SET THEORY

If limx→xi+ f(x) − limx→xi− f(x) > ε for i = 1, . . . , n, then it follows
from (13) that

f(1)− f(0) > nε,

i.e.
n <

f(1)− f(0)
ε

.

Hence there are at most
(
f(1)−f(0)

)
/ε numbers a such that limx→a+ f(x)−

limx→a− f(x) > ε

(c) Let
Ej = {a : lim

x→a+
f(x)− lim

x→a−
f(x) > 1/j},

where j = 1, 2, . . .. Then f is discontinuous at a iff a ∈ Ej for some
j (why?), i.e. iff a ∈ ⋃j≥1Ej. But each Ej is finite by the previous
result, and so

⋃
j≥1Ej is countable, being a union of a countable family

of countable (in fact finite) sets.

2. Let

f(x) =
{

0 x ∈ [0, 1] ∩Q
1 x ∈ [0, 1] \Q

Then f is discontinuous at each a ∈ [0, 1] since there are points arbi-
trarily close to a at which f takes the value 0, and there are points
arbitrarily close to a at which f takes the value 1.

Comment The set of discontinuities need not be finite. For example, let

f(x) = 1− 1
n

if x ∈
[
1− 1

n
, 1− 1

n+ 1

)
where n = 1, 2, . . ., and let f(1) = 1. Then f is increasing, and f is
discontinuous if x = 1

n
where n = 1, 2, . . ..

Note, incidentally, that f is continuous at 1 (why?).

Sketch the graph of f .
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Problem 4.12 1. Let f :X → Y where A ⊂ Y .

Suppose y ∈ f [f−1[A]] (we want to show y ∈ A). Then y = f(x) for
some x ∈ f−1[A]. But x ∈ f−1[A] means f(x) ∈ A, i.e. y ∈ A. Hence
f [f−1[A]] ⊂ A.

2. Let X = {x} and Y = A = {p, q}. Let f(x) = p. Then f−1[A] = {x}
and f [f−1[A]] = {p} 6= A.

3. (i) It is easiest to use polar coordinates x = r cos θ, y = r sin θ. Then

f [A] = {(r, r cos θ + r sin θ) : 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π}.

But

r cos θ + r sin θ = r(cos θ + sin θ)

=
√

2r(cos
π

4
cos θ + sin

π

4
sin θ)

=
√

2r cos(θ − π

4
).

Since −π
4 ≤ θ ≤

3π
4 , we see cos(θ − π

4 ) takes all values in [−1, 1].

Hence
f [A] = {(r, s) : 0 ≤ r ≤ a, −

√
2r ≤ s ≤

√
2r}.

See the following diagram.

(ii) We have

f−1[A] =
{

(x, y) :
(
(x2 + y2) + (x+ y)2

)1/2
≤ a

}
.

But (
(x2 + y2) + (x+ y)2

)1/2
≤ a

iff x2 + y2 + (x+ y)2 ≤ a2

iff x2 + y2 + xy ≤ a2/2.

Thus
f−1[A] =

{
(x, y) : x2 + y2 + xy ≤ a2/2

}
.

This can be written in the form

f−1[A] =
{

(x, y) :
3
4

(x+ y)2 +
1
4

(x− y)2 ≤ a2

2

}
,

which shows that f−1[A] is bounded by an ellipse with major and
minor axes of length a

√
2/
√

3 and a
√

2 respectively, as shown in the
following diagram.



a x

y

A f[A]
a

f-1[A]

a√2/√3

a√2a√2

a1 a2 a3 b3 b2 b1
.......

a b

a=b
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Remarks

1. f−1(x) does not make sense unless the function f is is one-one and
onto, and hence has an inverse. But f−1[A] makes sense for any f ,
provided A is a subset of the codomain.

Problem 4.13 1. Suppose i < j. Then

[ai, bi] ⊂ [aj, bj]

and so
ai ≤ aj ≤ bj ≤ bi.

It follows
a1 ≤ a2 ≤ a3 ≤ · · · ≤ b3 ≤ b2 ≤ b1.

In particular, the set {a1, a2, a3, . . .} is bounded above by any bn and
so has a l.u.b. a, say. Similarly, {b1, b2, b3, . . .} is bounded below by
any an and so has a g.l.b. b, say. Moreover a ≤ b.

Proof of a ≤ b. We know a is the least upper bound of
{a1, a2, a3, . . .}. But any bn is also an upper bound and so
a ≤ bn for all n. Hence a is a lower bound for {b1, b2, b3, . . .}.
Hence a ≤ b as b is the greatest lower bound of {b1, b2, b3, . . .}.

(Note that so far we have not used the fact that the intervals In are
closed.)

Since
an ≤ a ≤ b ≤ bn

for all n we see that
[a, b] ⊂ [an, bn] = In
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for all n. As a ≤ b it follows there exists x ∈ In for all n, just take
any x ∈ [a, b]. (Note that the last few lines use the fact that the In
are closed. What goes wrong if the In are open?)

To see that there is a unique x ∈ In for all n, assume x1, x2 ∈ In for all
n and x1 < x2. Then [x1, x2] ⊂ In for all n (as each In is an interval).
But this implies

length In ≥ x2 − x1

for all n, which contradicts the fact length In → 0.

2. We can in fact show that the result in 1. is false if R is replaced by
Q and the intervals In have rational endpoints.

For example, take an increasing sequence of rational numbers an →√
2 and a decreasing sequence of rational numbers bn →

√
2.11 Then

there is no rational number x belonging to all the In = [an, bn], since
the unique number in all the In is

√
2 and this is irrational.

3. (Although not explicitly stated, it is intended that the intervals (an, bn)
in the counterexample should be non-empty, as otherwise the result
is trivial.)

Let In = (0, 1/n). Then the intersection of all the In is empty.

We finally prove [a, b] is uncountable.

Suppose (in order to obtain a contradiction) that [a, b] is countable. Let
x1, x2, x3, . . . , xn, . . . be a sequence which enumerates [a, b]. Divide [a, b] into
3 intervals [a, a+(b−a)/3], [a+(b−a)/3, a+2(b−a)/3] and [a+2(b−a)/3, b].
Then for at least one of these intervals, which we call I1, we have x1 6∈ I1

(why do we need to divide [a, b] into 3, and not 2, parts for this to be true?).

Now divide I1 into 3 intervals. For at least one of these intervals, which
we call I2, we have x2 6∈ I1.

Continuing in this way we obtain a decreasing sequence of closed inter-
vals I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ · · · and such that lengthIn → 0 as n→∞. By the
previous part of the question, there exist an x such that x ∈ In for every
n. It follows that for each n, x 6= xn, since xn 6∈ In. Hence x is not a term
in the sequence x1, x2, x3, . . . , xn, . . . . Thus for any sequence of numbers
from [a, b] there is a member of [a, b] not in the sequence. Thus [a, b] is not
countable.

Remarks
11This is possible. For example, let

an = the nth decimal approximation to
√

2

and let
bn = 2−

(
the nth decimal approximation to 2−

√
2
)
.

Why does this work?
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1. It is incorrect to use induction in this Problem and argue along the
following lines:

Let Pn be the property “∃x such that x ∈ I1 ∩ · · · ∩ In”.
Since P1 is true and since Pn ⇒ Pn+1, then “∃x such that
x ∈ every In”.

This is totally erroneous. It is indeed the case that Pn is true for every
n, but this does not imply “∃x such that x ∈ I1 ∩ I2 ∩ · · · ∩ In ∩ · · ·”.

For example, let In = (0, 1/n). Then I1 ∩ I2 ∩ · · · ∩ In ∩ · · · = ∅. But
Pn is true for every n.

2. Do not used undefined notation such as limn→∞ In. It is not at all
clear what this means.

(a) Write length In → 0 if this is what you mean, and not In → 0.

(b) Does

lim
n→∞

[an, bn] mean
[

lim
n→∞

an, lim
n→∞

bn

]
?

If so, say it. And then you must justify the existence of limn→∞ an
and limn→∞ bn.

(c) And does limn→∞(−1/n, 1/n) = {0} or = ∅?

All this indicates the need to be very precise.

Problem 4.14 Let {Ai}i≥1 be a countable family of countable sets. Write

A1 = {a11 a12 a13 a14 . . .}
A2 = {a21 a22 a23 a24 . . .}
A3 = {a31 a32 a33 a34 . . .}

... =
...

Modifications: If any Ai is empty, omit it from the sequence. If any Ai is
finite, say Ai = {ai1, . . . , ain}, take ain+1, ai n+2, . . . = ain. If there are only
a finite number of Ai’s, say A1, . . . , Ak, set Ak+1, Ak+2, . . . = Ak. The only
case not included is if all the Ai are empty, but the result is trivial in this
case.

Define
g :N× N→

⋃
i≥1
Ai

by
g(i, j) = aij.

Since g is clearly onto, we have from Proposition 4.8.4 and the fact N× N
is countable that ⋃

i≥1
Ai ≤ N× N = d.
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Thus
⋃
i≥1Ai is countable.

Remarks Directly writing down some enumeration of
⋃
i≥1Ai is not an-

swering the Question as posed. The Question was to use Proposition 4.8.4
and the fact N×N is countable in order to prove the countability of

⋃
i≥1Ai,

i.e. in order to prove that there is indeed an enumeration of
⋃
i≥1Ai.

Problem 4.15 1. Let B∗ be the set of all elements in B which are not
in A. Then

A ∪B = A ∪B∗

and B∗ is disjoint from A.

Choose a denumerable set B′ ⊂ A (as in the proof of Problem 4.6).

Then
A = (A \B′) ∪B′,

where A \B′ and B′ are disjoint. Hence

A ∪B = A ∪B∗ = (A \B′) ∪B′ ∪B∗

where A \B′ and B′ ∪B∗ are disjoint.

There is a one-one correspondence between A \B′ and itself (just the
identity map); and a one-one correspondence between B′ and B′ ∪B∗,
since both are denumerable.

This gives a one-one correspondence between A and A ∪ B. Thus
A ∪B = A.

2. Let A be the set of irrationals and B = Q. Then from part 1, since
Q has cardinality d,

A = A ∪B = R = c.

Remarks Do not assume that A and B were disjoint from each other,
nor that B ⊂ A. Neither need be the case!

Problem 4.16 1. Let
S = S1 ∪ S2,

where S1 is the set of those sequences which do not end in an infinite
sequence of 1’s, and S2 is the set of those sequences which do end in an
infinite sequence of 1’s. Then every real number in [0, 1] has a unique
binary expansion corresponding to a member of S1.12 Hence S1 = c.
On the other hand, the members of S2 are in one-one correspondence
with certain rational numbers in [0, 1], and so S2 is countable.

It follows, that S has cardinality c from Question 2.
12For example, the number with expansion .10111 . . . also has the expansion .11000 . . ..
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2. Let
S0 =

⋃
n≥1

En,

where En is the set of sequences of length n. Then En is finite (with
cardinality 2n). Hence S0 is the union of a denumerable number of
finite sets, and so is countable by Theorem 4.9.1(3). It is clearly not
finite (why? ), and hence it is denumerable.

3. We define a one-one correspondence between P(N) (the set of all sub-
sets of N) and the set S as follows. If A ⊂ N then the corresponding
element of S is (a1, a2, a3, . . . , ai, . . .) where for each n, an = 1 if n ∈ A
and an = 0 if n 6∈ A.13 Thus P(N) has cardinality c since S has car-
dinality c from part 1.

There is also a map from S0 onto the set of all finite subsets of N, es-
sentially defined as above. For example, the sequence (1, 1, 0, 0, 1, 1, 0, 0)
is mapped to the set {1, 2, 5, 6}.14 It follows that the cardinality of
the set of all finite subsets of N is ≤ the cardinality of S0, which is d.
Since the cardinality of the set of all finite subsets of N is clearly not
finite (why? ), it must equal d.

Problem 4.17 1. Let x1, x2, . . . , xn, . . . be an enumeration of Q∩ (0, 1)
(this is possible as Q is denumerable). Suppose ε > 0.

(a) Let b1 = x1 and let I1 ⊆ (0, 1) be an open interval containing b1

with length ≤ ε/2 and irrational end-points.

(b) Let b2 be the first xi not in I1 and let I2 ⊆ (0, 1) be an open
interval containing b2 with length≤ ε/4 and irrational end-points
which is disjoint from I1.15

(c) Let b3 be the first xi not in I1 ∪ I2 and let I3 ⊆ (0, 1) be an open
interval containing b3 with length≤ ε/8 and irrational end-points
which is disjoint from I1 ∪ I2.

(d) Let b4 be the first xi not in I1 ∪ I2 ∪ I3 and let I4 ⊆ (0, 1) be
an open interval centred at b4 with length ≤ ε/16 and irrational
end-points which is disjoint from I1 ∪ I2 ∪ I3.

(e) etc.

In this way we obtain a sequence of open intervals {In} containing all
the rationals in (0, 1) and for which the sum of the lengths is ≤ ε.

13For example, the set {1, 2, 5, 6, 8, . . .} corresponds to the sequence
(1, 1, 0, 0, 1, 1, 0, 1, . . .).

14This map is not one-one. For example, the sequence (1, 1, 0, 0, 1, 1) is also mapped to
the set {1, 2, 5, 6}.

15Since the end-points of I1 are irrational, b2 is not an end-point. We need this fact,
since if b2 were an end-point we could not select I2 containing b2 and disjoint from I1. A
similar point is rlevant in the rest of the discussion.
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2. Since any open interval contains a rational number, this is clear.

3. (Sketch) Let

Cn = [0, 1] \
n⋃
i=1

(ai, bi).

Then Cn consists of n+ 1 disjoint closed intervals. Moreover,

C1 ⊃ C2 ⊃ · · · ⊃ Cn ⊃ · · · .

Note that Cn+1 is obtained from Cn by replacing one of the disjoint
closed intervals corresponding to Cn by two disjoint closed subinter-
vals.

Note also that

Ac = [0, 1] \
∞⋃
i=1

(ai, bi) =
∞⋂
n=1

Cn,

why?

Suppose x = (x1, x2, . . . , xn, . . .) ∈ S, where S is as in Question 4.16.
We first define a decreasing sequence of closed intervals {Kj}∞j=1 as
follows:

(a) According as x1 = 0 or x1 = 1, let K1 be the left or right interval
in [0, 1] \ (a1, b1).

(b) In the process of constructing {Cn}∞n=1, the interval K1 is at some
stage replaced by two disjoint subintervals. Let K2 be the left
or right interval according as x2 = 0 or x2 = 1.

(c) In the process of constructing {Cn}∞n=1, the interval K2 is at some
stage replaced by two disjoint subintervals. Let K3 be the left
or right interval according as x3 = 0 or x3 = 1.

(d) etc.

Then the intersection of the sets in the sequence {Kj}∞j=1 is a single-
ton. To see this, use Problem 4.13 (the fact the length of the Kj’s is
converging to zero uses the fact any given rational is not in Kj for all
j sufficiently large). Let f(x) be the member of this singleton. Then
f(x) ∈ Ac.

It is clear that f is one-one, why? Hence Ac has cardinality ≥ c. But
as Ac is a subset of [0, 1] it follows it has cardinality equal to c.
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5 Vector Space Properties of Rn

Problem 5.1 Let
x = ε1v1 + · · ·+ εnvn ,

and
x = δ1v1 + · · ·+ δnvn .

where ε1, . . . , εn, δ1 . . . , δn = 0 or 1, be two vertices of the n-cube.

Then

x− y = γ1v1 + · · ·+ γnvn

where each γi can take the values 0, 1 or −1. It follows that

|x− y| =
√
γ2

1 + · · ·+ γ2
n

can take any of the valaues 1,
√

2, . . .
√
n.

Problem 5.2 (a) Let x1, . . . ,xn be a basis for Rn such that x1, . . . ,xk is a
basis for V .

Apply the Gram-Schmidt process to x1 . . . ,xn to obtain an orthonor-
mal basis v1, . . . ,vn for Rn. Note that the vectors v1, . . . ,vk are precisely
those obtained from the Gram-Schmidt process applied to x1, . . . ,xk and
so v1, . . . ,vk give an orthonormal basis for V . If i > k then vi is orthogonal
to vj for each j ≤ k. Since vi is thus orthogonal to every member of a basis
for V , it easily follows (Exercise) that vi is orthogonal to every member
of V , that is, vi ∈ V ⊥. Thus we have n − k linearly independent (and
orthonormal) vectors vk+1, . . . ,vn in V ⊥.

We claim that in fact the vectors vk+1, . . . ,vn span V ⊥ and thus form
a basis. To see this suppose that x ∈ V ⊥, say

x = α1v1 · · ·+ αkvk + αk+1vk+1 + · · ·+ αnvn .

Since x · vi = 0 for i ≤ k it follows from the orthonormality of v1, . . . ,vn

that αi = 0 for i ≤ k. Thus

x = αk+1vk+1 + · · ·+ αnvn .

and so vk+1, . . . ,vn span V ⊥ as claimed.

(b) If x ∈ Rn then we can write

x = β1v1 + · · ·+ βkvk + βk+1vk+1 + · · ·+ βnvn .

and so
x = y + z
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where
y = β1v1 + · · ·+ βkvk ∈ V

and
z = βk+1vk+1 + · · ·+ βnvn ∈ V ⊥ .

We claim that the representation above is unique. For suppose

z = y1 + z1 = y2 + z2

where y1,y2 ∈ V and z1, z2 ∈ V ⊥. Then

y1 − y2 = x1 − z2 .

Since the left side lies in V and the right side lies in V ⊥, and the sides equal
each other, each lies in V ∩ V ⊥. But this latter is {0}, since if v ∈ V ∩ V ⊥,
v · v = 0, so that v = 0. Hence y1 = y2 and z1 = z2.

Problem 5.3 1. These all come from substituting ||z||2 = (z, z) in the
right hand sides for suitable choices of z. (2) is the parallelogram law .

2. It is clear that (x, x) = ||x||2. Now the parallelogram law gives

||u+ v + w||2 = ||u+ v − w||2 = 2||u+ v||2 + 2||w||2

||u− v + w||2 = ||u− v − w||2 = 2||u− v||2 + 2||w||2

Subtracting the two gives

||u+ v + w||2 − ||u− v + w||2 + ||u+ v − w||2 − ||u− v − w||2

= 2||u+ v||2 − 2||u− v||2

Thus
(u+ w, v) + (u− w, v) = 2(u, v) .

In particular, for w = u we see that (2u, v) = 2(u, v). Now take
u+ v = x, u− w = y, v = z to obtain

(x, z) + (y, z) = 2(
x+ y

2
, z) = (x+ y, z) .

A simple induction now shows that (mx, y) = m(x, y) and n(x/n, y) =
(nx/n, y) = (x, y) so that

m

n
(x, y) = m(

x

n
, y) =

m

n
(x, y) ,

and (·, ·) is positive rational linear. But (·, ·) is continuous and so
λ(x, y) = (λx, y) for λ ≥ 0. For λ < 0,

λ(x, y)− (λx, y) = λ(x, y)− (|λ|(−x), y) = λ(x, y)− |λ|(−x, y)
= λ(x, y) + λ(−x, y) = λ(0, y) = 0 .

Thus (·, ·) is in fact real linear.
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6 Metric Spaces

Problem 6.1 1. A = {x : 0 < |x− x0| ≤ δ}, δ > 0. Then

intA = {x : 0 < |x− x0| < δ},
∂A = {x0} ∪ {x : |x− x0| = δ},
A = {x : |x− x0| ≤ δ}.

The arguments are similar to those for Propositon 6.3.7 of the Notes.
In particular, x0 ∈ ∂A since every Br(x0) clearly contains a member
of Ac, namely x0, together with members of A.

2. A = {(r cos θ, r sin θ) : 0 < r < 1, 0 < θ < 2π}. Then

intA = A

∂A = {(r, 0) : 0 ≤ r ≤ 1} ∪ {(cos θ, sin θ) : 0 ≤ θ ≤ 2π},
A = {(r cos θ, r sin θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}.

Thus ∂A is the positive x-axis from 0 to 1 inclusive together with
the unit circle centred at the origin, while A is the “closed unit disc
(ball)”. All cases easily follow from the definitions.

3. For this part recall that any real number x can be approximated
arbitrarily closely by rational numbers.

Moreover, x can be approximated arbitrarily closely by irrational
numbers. (Add a small rational if x is irrational, add a small ir-
rational of x is rational.)

Now let A = {(x, y) : at least one of x or y is irrational }. Then

intA = ∅

since for (x, y) ∈ A every Br((x, y)) contains points both of whose
coordinates are rational.

∂A = R2

since for (x, y) ∈ A every Br((x, y)) contains both points of A and
points of Ac.

A = R2

by the previous comment.

Problem 6.2 1. A is not open since some points of A are not interior
points, that is, A 6= intA. A is not closed since some limit points of
A are not in A, that is A 6⊂ A (Theorem 6.4.6).
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2. A is open (every point is an interior point), but is not closed since
some limit points of A are not in A.

3. A is neither open or closed.

Problem 6.3 Let H = {x : z · x < c}. We want to show that if y ∈ H
then Br(y) ⊂ H for some r > 0.

Suppose y ∈ H, so that z · y = c′ < c. Let x ∈ Br(y) for some r > 0.
Using the triangle inequality and the Hint,

|z · x− bz · y| = |z · (x− y)|
≤ |z|r.

That is,
|z · x− c′| ≤ |z|r .

and so
z · x ≤ c′ + |z|r < c

provided r is chosen sufficiently small. Thus Br(y) ⊂ H for some r > 0 as
required, and hence H is open.

Problem 6.4 1. We have that x ∈ ∂A iff every Br(x) contains points
of both A and Ac, that is, of Ac and (Ac)c, that is, iff x ∈ ∂Ac.

2. For any set B, B ⊂ B from the definition of B. So certainly

A ⊂ (A) .

Now let a ∈ (A), and consider U = Br(x). Then U contains a point
y ∈ A, and for s > 0 sufficiently small V = Bs(y) ⊂ U (by the triangle
inequality).
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But V must contain a point z ∈ A, so that z ∈ A∩U . This being the
case for any r > 0, it follows that a ∈ A. Hence

(A) ⊂ A .

It follows that A = (A).

Problem 6.5 Just take A = (0, 1) ∪ (1, 2) ⊂ R. Then intA = A, but
intA = (0, 2).

Problem 6.6 We have A is open and B is closed. Thus A\B = A ∩Bc is
the intersection of two open sets and so is open.

Problem 6.7 1. int(A ∩ B) ⊂ intA ∩ intB. If x ∈ int(A ∩ B), then
Br(x) ⊂ A ∩ B for some r > 0. Thus Br(x) ⊂ A and Br(x) ⊂ B, so
that x is an interior point of A and of B as required.

2. If x ∈ intA ∩ intB, then there exist Br1(x) ⊂ A and Br2(x) ⊂ B. But
then Br(x) ⊂ A ∩B for r = min{r1, r2}.

Problem 6.8 Suppose that x ∈ intA∪ intB, so that x ∈ intA or x ∈ intB.
It clearly suffices to consider x ∈ intA. So there is r > 0 such that Br(x) ⊂
A ⊂ A ∪B. Thus x ∈ int(A ∪B).

To see that equality need not hold, take A = [0, 1] ⊂ R, B = [1, 2] ⊂ R.
Then intA = (0, 1), intB = (1, 2), yet intA ∪B = (0, 2) 6= (0, 1) ∪ (1, 2).

Problem 6.9 It is clear that d satisfies positivity and symmetry.

The triangle inequality for d asserts

d(x, y) ≤ d(x, z) + d(x, z),

i.e.
d(x, y)

1 + d(x, y)
≤ d(x, z)

1 + d(x, z)
+

d(z, y)
1 + d(z, y)

,

i.e.
d(x, y)

1 + d(x, y)
≤ d(x, z) + d(z, y) + 2d(x, z)d(z, y)

1 + d(x, z) + d(z, y) + d(x, z)d(z, y)
,

i.e.

d(x, y)
1 + d(x, y)

≤

(
d(x, z) + d(z, y) + d(x, z)d(z, y)

)
+ d(x, z)d(z, y)

1 + d(x, z) + d(z, y) + d(x, z)d(z, y)
. (14)

From the triangle inequality for d we have

d(x, y) ≤ d(x, z) + d(z, y)
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and so

d(x, y) ≤ d(x, z) + d(z, y) + d(x, z)d(z, y).

By letting

a = d(x, y)

and

b = d(x, z) + d(z, y) + d(x, z)d(z, y)

we see from (14) it is sufficient to prove that if 0 ≤ a ≤ b then

a

1 + a
≤ b

1 + b
.

But this is equivalent to

a+ ab ≤ b+ ab,

which is certainly true.

This completes the proof of the triangle inequality for d.

It remains to prove that d and d give the same collection of open sets.

As noted in the Exercise following Theorem 6.4.2 and concerning the
Euclidean and the sup metric, it is sufficient to show every d-ball centred
at x contains a d-ball centred at x, and conversely.

Since

d(x, y) =
d(x, y)

1 + d(x, y)
,

it follows

{y : d(x, y) < r} = {y : d(x, y) < r/(1 + r)}.

On the other hand, d = d
1−d and so any d-ball around x of radius r < 1

is also a d-ball around x of radius r/(1 − r). The d-balls of radius r ≥ 1
are the whole space and in particular contain the d-balls of radius 1.

Thus we have established the claim in italics, and so the open sets
corresponding to both metrics are the same.

Problem 6.10 Write Rn = Rs × Rn−s. For any x ∈ Rn write x = (x′,x′′)
where x′ = (x1, . . . , xs) and x′′ = (xs+1, . . . , xn−s). Let π(x) = x′.
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Assume A is open. We claim π[A] is open.

Take any point in π[A], which without loss of generality we denote by
x′. Then for some x′′ ∈ Rn−s the point x := (x′,x′′) ∈ A. Choose r > 0
such that Br(x) ⊂ A (this is possible as A is open).

Then π[Br(x)] ⊂ π[A].16 In the following lemma we show that

π[Br(x)] = B′r(x
′)

where B′r(x
′) is the ball in Rs about x′ of radius r. It follows that π[A] is

open, as x′ was an arbitrary point in π[A].

Lemma With the previous notation,

π[Br(x)] = B′r(x
′).

16If A ⊂ B then f [A] ⊂ f [B] as is easily checked.
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Proof: (⊂): Let y′ be any point in π[Br(x)]. Thus there exists y ∈
[Br(x)] such that y′ = π(y), and so y = (y′,y′′) for some y′′ ∈ Rn−s. Since

|y − x|2 = |y′ − x′|2 + |y′′ − x′′|2

it follows
|y′ − x′| ≤ |y − x| < r.

Thus y′ ∈ B′r(x′).
(⊃): Let y′ be any point in B′r(x

′)]. Then

π(y′,x′′) = y′.

But (y′,x′′) ∈ Br(x) since

|(y′,x′′)− x| = |y′ − x′| < r.

It follows y′ ∈ π[Br(x)].

Problem 6.11 1. S = [a, c)∪ (c, b], A = [a, c). Then A = (a− 1, c)∩ S
and so is open in S as it is the intersection of S with an open set.

A is also closed in S since A = [a, c] ∩ S.

2. S = (0, 1] and A = {1, 1/2, 1/3, . . .}. Then A = E ∩ S where E =
{0} ∪ {1, 1/2, 1/3, . . .}. Since E is closed, it follows A is closed in S.

A is not open in S. For assume (by way of obtaining a contradiction)
that

A = S ∩ E (15)

where E is open. Then 1/2 ∈ E and so I := (1/2 − ε, 1/2 + ε) ⊂ E
for some ε > 0 which we can choose to be < 1/2 − 1/3 = 1/6. But
also I ⊂ S and so I ⊂ A as A = S ∩ E. This is false and so (15) is
not possible for an open set E. Thus A is not open in S.

3. S = [0, 1] and A = {1, 1/2, 1/3, . . .}. The same argument as in (b)
shows that A is not open in S.

Moreover A is not closed in S. For assume (by way of obtaining a
contradiction) that

A = S ∩ E (16)

where E is closed. Then A is also closed since it is the intersection of
two closed sets. But on the other hand A is not closed as 0 is a limit
point of A and 0 6∈ A. This contradiction implies (16) is not possible
for a closed set E. Thus A is not closed in S.

[Note: We will see in the next Problem that since S is closed in R, a
subset of S is closed in S iff it is closed in R.]
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Problem 6.12 We are given that S is an open subset of X, where (X, d)
is a metric space.

If A ⊂ S is open in S then A = S ∩ E for some open E ⊂ X. Since
both S and E are open (in X) it follows that A is open in X.

Conversely, if A ⊂ S is open in X then A is certainly open in S, as
A = S ∩A and so is the intersection of two sets which are open in X.

The argument in the closed case is similar.

Problem 6.13 1. Positivity and Symmetry are immediate. For the triangle
inequality, note that

d(x, y) ≤ d(x, z) + d(x, y)

since

(i) x = y =⇒ d(x, y) = 0 and so result must be true as right side ≥ 0.

(ii) x 6= y =⇒ d(x, y) = 1, and at least one of d(x, z) and d(z, y) equal
1 (since we cannot have both z = x and z = y. Hence result is true.

2. Br(x) = {y : d(y, x) < r}. Hence Br(x) = {x} if r ≤ 1. Br(x) = X if
r > 1.

NOTE: B1(x) = {x : d(y, x) < 1} = {x}.
3. Since B1/2(x) = {x}, we see B1/2(x) = {x}. Thus x is an interior point
of {x}. Hence int{x} ⊃ {x} and so int{x} = {x}.

If y /∈ {x}, i.e. y 6= x, then

B1/2(y) = {y} ⊂ X ∼ {x}

Hence ext{x} ⊃ X ∼ {x} and so ext{x} = X ∼ {x}.

∂{x} = X ∼ (int{x} ∪ ext{x}) = φ

{x} = int{x} ∪ ∂{x} = {x}

Problem 6.14 1. Positivity and symmetry are immediate. To prove the
triangle inequality we have to show

(∗) min{1, d(x, y)} ≤ min{1, d(x, z)}+ min{1, d(z, y)}

We do this by considering various cases. One way is as follows:

(a) Suppose d(x, z) ≥ 1 or d(z, y) ≥ 1. Then the right side of (*) is ≥ 1.
But the left side of (*) is ≤ 1. Hence result (*) is true.

(b) Next suppose d(x, z) < 1 and d(z, y) < 1. Then the right side of (*)
is d(x, z) + d(z, y). But the left side is ≤ d(x, y). Hence, by the triangle
inequality for d, we see (*) is true.
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2. We will use the notation

Br(x) = {y : d(x, y) < r}

Br(x) = {y : d(x, y) < r}

Suppose r ≤ 1, then

d(x, y) < r iff d(x, y) < r

Suppose r > 1, then

d(x, y) < r for all y ∈ R2

Hence

Br(0) =

 usual Br(0) if r > 1

R2 if r > 1

3. Suppose A ⊂ R2 is open in the d metric. Then for each x ∈ A, Br(x) ⊂ A
for some r > 0.

By taking a smaller r if necessary, we may assume 0 < r < 1. But then
Br(x) = Br(x) and so Br(x) ⊂ A. Hence x is an interior point in the d
metric.

Conversely, if A is open in the d-metric, a similar argument shows A is
open in the d-metric.

Problem 6.15 Suppose

d1(x, y) ≤ αd2(x, y)

d2(x, y) ≤ βd1(x, y)

1. If y ∈ B2
r (x) then d2(x, y) < r. Hence d1(x, y) < αr. Hence y ∈

B1
αr(x).

i.e. B2
r (x) ⊂ B1

αr(x).

Similarly, B1
r (x) ⊂ B2

βr(c).

2.

d∞(x, y) = max{|x1 − y1|, · · · , |xn − yn|}

d2(x, y) =

√√√√ n∑
i=1

(xi − yi)2
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Thus

d∞(x, y) ≤ d2(x, y) ≤
√√√√ n∑

i=1
(d∞(x, y))2 ≤

√
nd∞(x, y)

This proves the result.

3. There is no α such that

(∗) d2(x, y) ≤ αd(x, y)

for all x, y ∈ R2.

For suppose there were such an α. The right side of (*) is at most α.
But by selecting suitable x, y ∈ R2, we can ensure the left side of (*)
is greater than α.

This contradicts (*).

4.

d∞(f, g) = max
a≤x≤b

|f(x)− g(x)|( = sup
a≤x≤b

|f(x)− f(x)| by continuity

d1(f, g) =
∫ b

a
|f − g|

(i) Thus

d1(f, g) ≤
∫ b

a
d∞(f, g) = (b− a)d∞(f, g)

(ii) However, there is no α such that

(∗) d∞(f, g) ≤ αd1(f, g)

for all f , g ∈ C[a, b]

To see this, suppose there were such an α that (*) is true.
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By choosing g = 0 in [a, b]; and if with the graph as shown (we could
easily write down an expression for f), we see

d∞(f, g) = n

d1(f, g) = 1/2

By choosing n sufficiently large, we get a contradiction to (*). Hence
there is no α such that (*) is true for all f and g ∈ C[a, b].

5. Let A = B∞1 (O) be the “unit ball” in the sup metric about zero
function O, i.e.

A = {f ∈ C[a, b] : sup
a≤x≤b

|f(x)| < 1}

A is open in the sup metric (since the open balls in any metric are
indeed open sets with respect to that metric). But A is not open in
the L1 metric. To see this, first note that O ∈ A (where O is the zero
function.

For any ε > 0, we can find a function f ∈ C[a, b], f 6∈ A, with

d1(f,O) ≤ ε .

Hence A is not open in the L1 metric; asO ∈ A and there are functions
arbitrarily close to O in the sup metric which are NOT in A.

Problem 6.16 1.

1. Let A = {1, 1/2, 1/3, . . .} ∈ R.

2. Consider a ball Bε(x).

Choose x1 ∈ A ∩ (Bε(x) ∼ {x}).
Choose x2 6= x1; x2 ∈ A∩(Bε(x) ∼ {x}). (This is possible by choosing
x2 ∈ A ∩ (Br1(x) ∼ {x}) where r1 < min{ε, d(x1, x)})
Choose x3 6= x1, x2; x3 ∈ A ∩ (Bε(x) ∼ {x}). (This is possible by
choos-
ing x3 ∈ A ∩ (Br2(x) ∼ {x}) where r2 < min{ε, d(x1, x), d(x2, x)}).
Choose x4 6= x1, x2, x3; x4 ∈ A ∩ (Bε(x) ∼ {x}) etc.

3. Trivial

4. Suppose x ∈ A. If x is not a limit point of A then x ∈ A (by definition
of A). Since x is not a limit point of A, it follows from Definition 6.9
that x is isolated. Thus every x ∈ A is either a limit point or an
isolated point. It follows from Definition 6.9 that x cannot be both.
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5. If x ∈ A, then x is either a limit point or an isolated point. In either
case, it follows from Definition 6.9 that every Br(x) contains a point
from A. Conversely, suppose every Br(x) contains a point from A. If
x ∈ A then certainly x ∈ A. If x 6∈ A, then x is a limit point from A
(as
follows from Definition 6.9).

2. Let Aλ(λ ∈ S) be a collection of closed sets. Then Ac
λ are all open, and

so
⋃
λ∈S A

c
λ is open by Theorem 6.16.

But [
⋂
λ∈S Aλ]

c = [
⋃
λ∈S A

c
λ], and so [

⋂
λ∈S Aλ]

c is open. Hence
⋂
λ∈S Aλ is

closed.

Problem 6.17 1. (a) Suppose B ⊂ A, B open.

Take x ∈ B and choose r > 0 so Br(x) ⊂ B. Then V Br(x) ⊂ A, and so
x is an interior point of A. i.e. B ⊂ int A.

(b) Let F be the family of all open subsets of A. From (a), if O ∈ F
then O ⊂ int A. Hence ⋃

O∈F
O ⊂ int A .

But
⋃
O∈F O ⊃

∫
A is trivial, since int A is itself a member of F .

This shows ⋃
O∈F

O = int A

2. We have

Ac = int(Ac) ∪ ∂(Ac) [from (6.6)]
= extA ∪ ∂A [by (6.3), and the fact ∂A = ∂Ac]
= (intA)c [from (6.2) and last line of Prop.6.8]

i.e. Ac = (intA)c and so

Acc = intA

This proves half the question.

Now replace A by Ac in 6.17. Then

A
c = intAc

and so
A = (intAc)c

3. A is the smallest closed set containing A, in the sense that

(i) If B ⊃ A and B is closed then B ⊃ A.

(ii) A =
⋃
C∈G C, where G is the family of all closed sets containing A.
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Proof: (i) Suppose B ⊃ A and B is closed. Then Bc ⊂ Ac and Bc is
open. Therefore Bc ⊂ intAc by part 1(a), which equals Ac by part 2. Thus,
taking complements, B ⊃ A.

(ii) By part 2,

A = (intAc)c =
( ⋃
O∈F

O

)c
by part 1b], where F is the family of all open subsets of Ac. Thus by de
Morgan’s laws,

A =
⋃
O∈F

Oc =
⋃
C∈G

C

since O is an open subset of Ac iff Oc is a closed set containing A.

Problem 6.18 1. If f(a) ≤ b, then from the first diagram

ab︸︷︷︸
area of rectangle

≤
∫ a

0
f +

∫ b

0
g︸ ︷︷ ︸

area of rectangle + a little bit more

Similarly, if f(a) > b, use the second diagram.

2. Let f(x) = xp−1. Note that f satisfies the conditions of (1). Moreover,
the inverse g is given by

g(y) = x iff xp−1 = y iff x = y
1
p−1

Hence from (1)

ab ≤ ∫ a
0 x

p−1dx+
∫ b

0 y
1
p−1dy

= p−1xp|a0 + p−1
p
y

p
p−1 |b0

= ap

p
+ bp

′

p′

3. First assume ∑
i

|ai|p =
∑
|bi|p

′
= 1

Then from (2) ∑
i |ai| |bi| =

∑
i

(
1
p
|ai|p + 1

p′ |bi|p
′
)

= 1
p

∑
i |ai|p + 1

p′
∑

i |bi|p
′

= 1
p

+ 1
p′ = 1

In the general case, let

α =
(∑

i

|ai|p
)1/p

and β =
(∑

i

|bi|p
′
) 1

p′
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Then ∑
i

∣∣∣∣aiα
∣∣∣∣p =

∑
i

∣∣∣∣∣biβ
∣∣∣∣∣
p′

= 1

and so by the previous special case

∑
i

∣∣∣∣∣aibiαβ

∣∣∣∣∣ ≤ 1

that is,

∑
i

|aibi| ≤ αβ =
(∑

i

|ai|p
)1/p (∑

i

|bi|p
′
) 1

p′

4. (This is same argument as for (3).)

First assume ∫ b

a
|f |p =

∫ b

a
|g|p′ = 1

Then from (2) ∫ b
a |f g| ≤

∫ b
a

1
p
|f |p + 1

p′ |g|p
′

= 1
p

+ 1
p′

= 1

In the general case, let

α =
(∫ b

a
|f |p

)1/p

, β =
(∫ b

a
|g|p′

) 1
p′

Then ∫ b

a

∣∣∣∣∣fα
∣∣∣∣∣
p

=
∫ b

a

∣∣∣∣∣ gβ
∣∣∣∣∣
p′

= 1

Then ∫ b

a

∣∣∣∣∣ f gα β
∣∣∣∣∣ ≤ 1

Therefore

∫ b

a
|f g| ≤ αβ =

(∫ b

a
|f |p

)1/p (∫ b

a
|g|p′

)1/p′

5. Note that

(a) ‖x‖p ≥ 0 and ‖x‖p = 0 iff x = O.

(b) ‖αx‖p = |α| ‖x‖p if α ∈ R.
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Moreover,

‖x+ y‖pp =
∑

i |xi + yi|p

=
∑

i |xi + yi| |xi + yi|p−1

≤ ∑
i [|xi| |xi + yi|p−1 + |yi| |xi + yi|p−1]
(by triangle inequality in R)

≤ (
∑

i |xi|p)1/p
(∑

i |xi + yi|p
′(p−1)

)1/p′

+ (
∑

i |yi|p)
(∑ |xi + yi|p

′(p−1)
)1/p′

(by Holder′s inequality)
= (‖x‖p + ‖y‖p)(‖x+ y‖p)1/p′

6. This is exactly the same as (5).

Problem 6.19 1. Symmetry and positivity are clear. The triangle in-
equality is immediate from the triangle inequality for real numbers,
i.e.

d(p1, p2) = 1θ1 − θ21

≤ 1θ1 − θ31 + 1θ3 − θ21

= d(p1, p3) + d(p3, p2)

where p3 = (cos θ3, sin θ3).

2. From Theorem 6.3.6, A = intA∪∂A. Since intA and ∂A are mutually
disjoint from Proposition 6.3.2, it follows that

∂A = A \ intA

3.
BX

2 (0) = X ; BX
1/2(0) = [0, 1/2)

4.
BX

2 (0) = {−1, 0, 1} ; BX
1/2(0) = {0}

5. Let

S = {1
2
,
1
3
,
1
4
, . . .} ∪ {11

2
, 1

1
3
, 1

1
4
, . . .} ∪ {11

2
, 2

1
3
, 2

1
4
, . . .}

Limit points are 0, 1, 2.

6. (a) (−1, 1,−1, 1,−1, 1, . . .)

(b) Let (xn) be an enumeration of Q. Then there exists a subse-
quence converging to any real number a (e.g. - take a subse-
quence of the nth approximations in the decimal expansion of
a). (The latter subsequence is needed to ensure we end up with
a subsequence of the original (xn).)
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7 Sequences and Convergence

Problem 7.1 Since 2−m → 0, m2/m! → 0 and 3m/m! → 0 as m → ∞ by
standard properties of limits, it follows (xm, ym)→ (1, 0) as m→∞.

Problem 7.2 Let A ⊂ Rs and B ⊂ Rn−s be closed.

In order to show A × B is closed let (xk)∞k=1 ⊂ A × B with xk → x
(we want to show x ∈ A × B). Write xk = (x′k,x

′′
k) for k = 1, 2, . . ., and

x = (x′,x′′), where x′k,x
′ ∈ Rs and x′′k,x

′′ ∈ Rn−s.
Since |x′k−x′| ≤ |xk−x| and |x′′k−x′′| ≤ |xk−x| it follows that x′k → x′

and x′′k → x′′. Since A and B are closed it follows x′ ∈ A and x′′ ∈ B and
so x ∈ A×B. Thus A×B is closed.

Problem 7.3 Let xm → x0 and ym → y0 as m → ∞. Assume y0 6= 0
and ym 6= 0 for all m ≥ 1. We want to show xm/ym → x0/y0 (note that
the sequences are in R). As noted in the Question it is sufficient to show
y−1
m → y−1

0 since then by the multiplication property of limits the required
result follows.

Suppose ε > 0. Then

|y−1
m − y−1

0 | =
∣∣∣∣∣y0 − ym
y0ym

∣∣∣∣∣
=
|y0 − ym|
|y0ym|

.

Choose N so m ≥ N implies |y0 − ym| < ε and |ym| ≥ |y0|/2.17 Then for
m ≥ N it follows

|y−1
m − y−1

0 | <
2ε
|y0|2

.

Since ε is arbitrary, this gives the result.18

Problem 7.4 From the Example in Section 7.4 we have

xm =
(

1 +
1
m

)m
= 1 + 1 +

1
2!

(
1− 1

m

)
+

1
3!

(
1− 1

m

)(
1− 2

m

)
+ · · ·+ 1

m!

(
1− 1

m

)(
1− 2

m

)
· · ·

(
1− m− 1

m

)
, (17)

ym = 1 + 1 +
1
2!

+ · · ·+ 1
m!
.

17The latter is possible as y0 6= 0 and ym → y0.
18We could replace ε throughout the proof by ε |y0|2

2 and thereby end up with |y−1
m −

y−1
0 | < ε, but we would not normally bother doing this.
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Moreover we also have from there that (xm) and (ym) are increasing se-
quences, xm → x0 (say), ym → y0 (say), and

xm ≤ ym ≤ y0 ≤ 3.

Since xm ≤ ym for all m it follows from the Comparison Test that

x0 ≤ y0. (18)

On the other hand19 if n < m then by taking the first n+ 1 terms in (1)
we have

xm ≥ 1 + 1 +
1
2!

(
1− 1

m

)
+

1
3!

(
1− 1

m

)(
1− 2

m

)
+ · · ·+ 1

n!

(
1− 1

m

)(
1− 2

m

)
· · ·

(
1− n− 1

m

)
.

If we fix n and let m→∞ then it follows from the Comparison Test that

x0 ≥ 1 + 1 +
1
2!

+ · · ·+ 1
n!
.

This is true for all n and so

x0 ≥ 1 + 1 +
1
2!

+ · · ·+ 1
n!

+ · · · = y0. (20)

From (18) and (20) it follows that x0 = y0, as required.

Problem 7.5 A singleton A = {x} from Rn is closed since any sequence
from A must trivially be constant and so have its limit in A. From Section
7.6 of the Notes it follows that A is closed.

(Alternatively, if y 6= x and r = |y − x| then Br(y) ⊂ Ac, and so Ac is
open, i.e. A is closed.)

As noted in the Question, any finite set is a finite union of singletons,
and so is closed.

19It is not sufficient to just say that the (n+ 1)th term

1
n!

(
1− 1

m

)(
1− 2

m

)
· · ·
(

1− n− 1
m

)
in (17) approaches 1/n! as m→∞ and so the right side of (17) approaches

1 + 1 +
1
2!

+ · · ·+ 1
m!
.

The problem is that this is equivalent to saying that

lim
m→∞

m∑
n=1

anm =
∞∑
n=1

lim
m→∞

anm. (19)

But if anm = 0 if n 6= m and anm = 1 if n = m then the left side of (19) is 1 and the right
side is 0.

The basic rule is that it is not justifiable to interchange limits or infinite sums without
further argument.
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Problem 7.6 Suppose A ⊂ R2 is open.

Let S be the family of all balls Br(x) such that r is rational and the
components of x are both rational. Then there is a one-one correspondence
between S and (Q ∩ {r : r > 0}) × Q × Q, namely Br((x, y)) ↔ (r, x, y).
But (Q ∩ {r : r > 0}) × Q × Q is countable by Theorem 4.9.1(1) applied
twice. Hence S is countable.

Let SA be the family of balls in S which are subsets of A. Note that SA
is countable, being a subset of a countable set. We claim that

A =
⋃
SA,

where
⋃SA is the union of all balls in SA.

Since Br(x) ⊂ A for any Br(x) ∈ SA, it follows
⋃SA ⊂ A.

On the other hand if y ∈ A then since A is open it follows Bs(y) ⊂ A for
some s > 0 (see the following diagram). Choose a point x ∈ Bs/4(y) ⊂ A
both of whose coordinates are rational.20 Choose r > 0 rational so s/4 ≤
r < s/2. Then

y ∈ Br(x) ⊂ Bs(y) ⊂ A,
as can be easily checked from the triangle inequality. In particular Br(x) ∈
SA and so y ∈ ⋃SA. Since y was an arbitrary element of A it follows
A ⊂ ⋃SA.

This completes the proof.

Problem 7.7 1. |‖xn‖ − ‖x‖| ≤ ‖xn − x‖ (by the comment after Defi-
nition 5.3), and we are done.

20This is possible. Let y = (y1, y2). Choose x1 rational where |x1 − y1| < s/8 and
choose x2 rational where |x2 − y2| < s/8. Let x = (x1, x2). Then x ∈ Bs/4(y).
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2. (i) Suppose A is open.

We need to show that if x ∈ A and xn → x then xn ∈ A for all
sufficiently large n] So assume x ∈ A and xn → x. Now A is open,
so that Br(x) ⊂ A for some r > 0. Since xn → x, xn ∈ Br(x) for all
sufficiently large n. Hence, xn ∈ A for all sufficiently large n.

(ii) Suppose A is not open. Then for some x ∈ A, no Br(x) ⊂ A. In
particular, B1/n(x) 6⊂ A for (n = 1, 2, 3, . . .). Choose xn ∈ B1/n(x),
xn 6∈ A. Then x ∈ A, xn → x; but it is not the case that xn ∈ A for
all sufficiently large n.

Problem 7.8 1. Let A = B1 ∪B2

(a) Since B1 ⊂ A, it follows that B1 ⊂ A. Similarly B2 ⊂ A, so that

B1 ∪B2 ⊂ A

(b) Suppose x ∈ A, so there is a sequence (xn) ⊂ A such that
xn → x. Then either B1 or B2 (possibly both) must contain
an infinite subsequence (xin); say it is Bi. Then x ∈ Bi. It
follows that

B1 ∪B2 ⊃ A

2. The proof is almost identical to that of 1, the pidgeonhole principle
giving an infinite subsequence in at least one of the Bi.

3. Again, the same proof as before, but it only works one way this time.

4. Taking Bi = [1/i, 1], A = (0, 1] so that A = [0, 1]. But
⋃∞
i=1Bi =

(0, 1] 6= A.

Problem 7.9 1. Suppose that αn → α in R, and xn → x in X. Then

|αx− αnxn| = |(α(x− xn) + (α− αn)x|
≤ |α||x− xn||+ |α− αn|||xn||
→ 0 .

2. (a)

log(n+ 1)− log(n)| = log
n+ 1
n

= log(1 + 1/n)

But 1 + 1/n → 0 as n → ∞, and the logarithm function os
continuous (at 1), so that

log(1 + 1/n)→ log(1) = 0 .

(b) Certainly not. | logm − logn| = | log m
n
| and the latter has no

limit as m,n → ∞. For example, choosing m = kn for some
fixed k ∈ N, | log m

n
| = log k no matter how large n may be. And

we can choose any such k.



48 8 CAUCHY SEQUENCES

8 Cauchy Sequences

Problem 8.1 Let V be the set of infinite sequences

x = (x1, x2, . . .)

for which
∑∞

n=1(x
n)2 is finite. Define

||x|| =
[ ∞∑
n=1

(xn)2

]1/2

.

The set of all infinite sequences is easily checked to be a vector space
with zero vector 0 = (0, 0, 0, . . .).21 In order to show that V is a sub-
space (and hence a vector space) we have to show that V contains the zero
sequence (which is trivial) and is closed under addition and scalar multi-
plication. In other words, if ||x|| and ||y|| are finite then so are ||αx|| (for
any α ∈ R) and ||x + y||. But ||αx|| = |α| ||x|| and

||x + y||2 =
∞∑
n=1

(xn + yn)2 ≤ 22 2
∞∑
n=1

(xn)2 + 2
∞∑
n=1

(yn)2 = 2||x||2 + 2||y||2.

Thus ||x + y|| is finite if ||x|| and ||y|| are finite.

1. To check that || · || is a norm , note that positivity and homogeneity
are easy. For the triangle inequality let

y = (y1, y2, . . .).

Note that

||x + y|| =
[ ∞∑
n=1

(xn + yn)2

]1/2

= lim
n→∞

[
n∑
k=1

(xk + yk)2

]1/2

.

But [
n∑
k=1

(xk + yk)2

]1/2

≤
[

n∑
k=1

(xk)2

]1/2

+
[

n∑
k=1

(yk)2

]1/2

by the triangle inequality in Rk. It follows from the Comparison Test
Theorem that

||x + y|| ≤ ||x||+ ||y||.

21This is also a particular case of the fact that the set of all real-valued functions defined
on any set S is a vector space with the zero vector being the zero function. Here take
S = N.

22Since (a+ b)2 ≤ 2(a2 + b2) as is easily checked.
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2. Let (xk)∞k=1 be a Cauchy sequence in V. Each xk is itself a sequence
and so we can write

x1 = x1
1, x

2
1, x

3
1, . . .

x2 = x1
2, x

2
2, x

3
2, . . .

x3 = x1
3, x

2
3, x

3
3, . . .

...
xk = x1

k, x
2
k, x

3
k, . . .

...

We want to show that xk → x as k →∞ for some x = (x1, x2, x3, . . .) ∈
V, where

xk → x means ||xk − x|| → 0.23 (21)

Since (xk) is a Cauchy sequence, this means that ||xj − xk|| → 0 as
j, k →∞. For each n it is easy to see that

|xnj − xnk | ≤ ||xj − xk||

and so |xnj − xnk | → 0 as j, k → ∞. That is, for each n the sequence
(xnk)

∞
k=1 is a Cauchy sequence of real numbers and so converges to xn,

say.

Let x = (x1, x2, x3, . . .) (thus xk → x as k →∞, in the componentwise
sense). We claim that xk → x as k →∞, in the sense of (21) (this is
the main point).

So suppose ε > 0. Choose K so

j, k ≥ K implies ||xj − xk|| < ε,

i.e. ∞∑
n=1

(
xnj − xnk

)2
≤ ε2. (22)

23This is sometimes called norm convergence to distinguish it from componentwise con-
vergence. Componentwise convergence means that for each n we have xnk → xn as k →∞.

It is not true that componentwise convergence implies norm convergence. For example
let

x1 = 1, 0, 0, . . .
x2 = 0, 1, 0, . . .
x3 = 0, 0, 1, . . .

...

Then for each fixed n we see xnk → 0 as k → ∞ and so xk → x = (0, 0, 0, . . .) in the
componentwise sense as k → ∞ . But ||xk − x|| = 1 for all k and so it is not true that
xk → x in the norm sense.

On the other hand it is easy to see that norm convergence implies componentwise
convergence.



50 8 CAUCHY SEQUENCES

Hence for each N
N∑
n=1

(
xnj − xnk

)2
≤ ε2.

Fixing j and letting k →∞, it follows from the Comparison Test that

N∑
n=1

(
xnj − xn

)2
≤ ε2.

Since this is true for each N it follows by another application of the
Comparison Test that

∞∑
n=1

(
xnj − xn

)2
≤ ε2. (23)

Thus for j ≥ K = K(ε) we have

||xj − x|| ≤ ε.24

Since ε > 0 was arbitrary it follows that xj → x (in the norm sense)
as j →∞. This proves the claim and so we are done.

3. Since ||x|| = 1 for all x ∈ A it follows A is bounded.

To show A is closed let (xk)∞k=1 be a convergent sequence of elements
from A. Since ||ep − eq|| =

√
2 if p 6= q (check) and since any conver-

gent sequence is Cauchy, it follows that for all k ≥ K, say, we must
have xk = xK . In other words, a convergent sequence from A is in
fact constant beyond some term in the sequence. This constant value
must be the limit of the sequence, and in particular the limit is in A.

From Corollary 7.6.2 it follows that A is closed.

Problem 8.2 Let x1 + x2 + . . . be an infinite series in Rk. Assume that
the series of real numbers |x1|+ |x2|+ . . . converges.

24We cannot without further justification just let k → ∞ in (22) and so deduce (23).
The problem is that it is not necessarily true that

lim
k→∞

∞∑
n=1

ynk =
∞∑
n=1

lim
k→∞

ynk .

For example let
y1 = y1

1 , y
2
1 , y

3
1 , . . . = 1, 0, 0, . . .

y2 = y1
2 , y

2
2 , y

3
2 , . . . = 0, 1, 0, . . .

y3 = y1
3 , y

2
3 , y

3
3 , . . . = 0, 0, 1, . . .

...

Then
∑∞
n=1 y

n
k = 1 and so limk→∞

∑∞
n=1 y

n
k = 1; but limk→∞ ynk = 0 for each n and so∑∞

n=1 limk→∞ ynk = 0.
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Let sn = x1 + · · ·+ xn be the corresponding sequence of partial sums.25

Then for m > n,

|sm − sm| = |xn+1 + · · ·+ xm|
≤ |xn+1|+ · · ·+ |xm|. (24)

Now the series of real numbers |x1|+|x2|+. . . converges, i.e. the correspond-
ing sequence of partial sums converges, and so this sequence of partial sums
must be Cauchy. But this means that for each ε > 0 there exists N such
that m > n ≥ N implies

|xn+1|+ · · ·+ |xm| ≤ ε.

From (24) it follows
|sm − sn| ≤ ε

if m > n ≥ N . Thus (sn) is Cauchy and so converges to a point in Rk (since
Rk is complete), i.e. the original series converges.

The converse is: “if x1+x2+. . . converges then |x1|+|x2|+. . . converges”.
This is FALSE.

A counterexample in R is given by the series

1− 1
2

+
1
3
− 1

4
+ · · ·+ (−1)n+1 1

n
+ · · · .

This converges but the series

1 +
1
2

+
1
3

+
1
4

+ · · ·

diverges.

Problem 8.3 Suppose a < b and a, b ∈ I where I is an interval from R.
Suppose f is differentiable and |f ′(x)| ≤ λ for all x ∈ I.

(i) If x, y ∈ I, x < y, it follows from the Mean Value Theorem of
Calculus that for some c ∈ (x, y)

|f(x)− f(y)| = |f ′(c)| |x− y| ≤ λ|x− y|.

Hence f is a contraction map if λ < 1.

(ii) It follows immediately from the Contraction Mapping Theorem
that f(x) = x has a unique solution if λ < 1.

25Remember that convergence of any infinites series, by definition, means convergence
of the corresponding sequence of partial sums.
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Problem 8.4 Define f : I → I where I = [0,∞) so that f has a graph as
shown in the next diagram.

For example let

f(x) = x+ (x+ 1)−1.

Then

f ′(x) = 1− (x+ 1)−2.

Since |f ′(c)| < 1 for all c ∈ I, it follows from the Mean Value Theorem
(see the previous Question) that |f(x)− f(y)| < |x− y| for all x, y ∈ I and
x 6= y.

On the other hand, f(x) > x for all x ∈ I and so f(x) = x has no
solutions.

This does not contradict the Contraction Mapping Principle since there
is no single λ < 1 such that |f(x)− f(y)| ≤ λ|x− y| for all x, y ∈ I.

Problem 8.5 Let f :R2 → R2 be given by

f(x, y) = (
1
3

sinx− 1
3

cos y + 2,
1
6

cosx− 1
2

sin y − 1).

Let x = (x, y) and u = (u, v). Then

f(x)−f(u) = (
1
3

sinx−1
3

sinu−1
3

cos y+
1
3

cos v,
1
6

cosx−1
6

cosu−1
2

sin y+
1
2

sin v).

From the Mean Value Theorem, since sin′ x = cosx and cos′ x = − sinx,
it follows that | sinx−sinu| ≤ |x−u|, | cosx−cosu| ≤ |x−u|, and similarly
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for y and v. Thus26

|f(x)− f(u)|2 = |13 sinx− 1
3 sinu− 1

3 cos y + 1
3 cos v|2

+|16 cosx− 1
6 cosu− 1

2 sin y + 1
2 sin v|2

≤ 2
9(sinx− sinu)2 + 2

9(cos y − cos v)2

+ 2
36(cosx− cosu)2 + 2

4(sin y − sin v)2

≤ 2
9 |x− u|2 + 2

9 |y − v|2 + 2
36 |x− u|2 + 2

4 |y − v|2
= 5

18 |x− u|2 + 13
18 |y − v|2

≤ 13
18 |x− u|2.

Thus f is a contraction mapping with contraction constant
√

13/18. It
follows that f has a fixed point.

Problem 8.6 1. An = [n,∞).

2. Choose an ∈ An for each n ∈ N. Then given m,n,

xm, xn ∈ Amin{m,n}

so that
d(xm, xn) ≤ diamAmin{m,n} → 0

as m,n → ∞. Thus (xn) is a Cauchy sequence, and so converges to
some x ∈ R by completeness. We claim that x ∈ ⋂∞n=1An. But for
any p ∈ N, we have xn ∈ Ap for all n ≥ p, so that x = limn xn ∈ Ap.

Thus
⋂∞
n=1An 6= ∅.

Problem 8.7 1. (a) Take x = (x1, . . . , xn),x′ = (x′1, . . . , x
′
n). Then

|F (x)− F (x′)| = max
i
|
n∑
j=1

aijxj − aijx′j)|

≤ max
i

n∑
j=1
|aij|xj − x′j|

= max
i

n∑
j=1
|aij| ||x− x′||∞

≤
(
max
i

n∑
j=1
|aij|

)
||x− x′||∞

≤ λ||x− x′||∞

provided
∑n

j=1 |aij| ≤ λ for each i. The result is now clear.

26Using (a + b)2 ≤ 2a2 + 2b2 in the first inequality. This is easily checked and worth
remembering.
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(b) Using the standard metric instead

|F (x)− F (x′)|2 =
∑
i

∑
j

(aijxj − aijx′j)2

≤
∑
i

[
∑
j

a2
ij

∑
j

|xj − x′j|2

= (
∑
i

∑
j

a2
ij)(

∑
j

|xj − x′j|2)

≤ λ2||x− x′||22

where we have used the Cauchy-Schwarz inequality. The result fol-
lows.

(c) Immediate from the Contraction Mapping Theorem.

2. Suppose that G = Fn is a contraction map. Then G has a unique
fixed point, say x0. Then

G(F (x0)) = Fn+1(x0) = F (G(x0)) = F (x0) ,

so that F (x0) is also a fixed point of G. By uniqueness we thus have
F (x0) = x0, so that F has a x0 as a fixed point. Further, any fixed
point of F is certainly also one of G, so by uniqueness of x0 as a fixed
point of G, F has unique fixed point x0.

Problem 8.8 1. From the previous problem, assuming the aij are con-
stants, the condition that α2

11 + a2
12 + a2

21 + a22 = λ < 1 suffices.

2. Solving F (x) = x we have, with

A =
(
a11 a12

a21 a22

)
,

x = (I −A)−1

(
b1

b2

)
.

3. The condition from 1. is just λ2
1 + λ2

2 < 1.

4. We have

|F (x− Fx′|2 = |λ1(x1 − x2)2 + λ(x2 − x′2)2|
≤ max{λ2

1, λ
2
2}((x1 − x2)2 + (x2 − x′2)2|

= max{|λ1|, |λ2|}2||x− x′||22

So F is a contraction if max{|λ1|, |λ2|} < 1. On the other hand,
it is easily seen, by looking at the standard basis vectors, that this
condition is also necessary.
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9 Sequences and Compactness

Problem 9.1 Let (X, d) be a metric space.

We will first show that any compact subset of X is closed.

Assume A ⊂ X is compact. In order to show that A is closed, let xn → x
as n→∞, where (xn) ⊂ A. We want to show x ∈ A.

Since A is compact, some subsequence of (xn) converges to a, say, where
a ∈ A. But this subsequence must also converge to x, by Theorem 9.1.1.
Hence x = a, by Theorem 7.3.1. Thus x ∈ A, and so A is closed.

Assume next that A ⊂ C, where C is compact and A is closed. In
order to show A is compact, let (xn)∞n=1 ⊂ A. Since C is compact, some
subsequence of (xn) converges to c, say, where c ∈ C. Since A is closed, it
follows that c ∈ A. Hence A is compact.

Problem 9.2 Let x, y ∈ X. Suppose ε > 0 and choose x′, y′ ∈ A such
that27

d(x, x′) ≤ d(x,A) + ε

and
d(y, y′) ≤ d(y,A) + ε. (25)

Then

f(x)− f(y) = d(x,A)− d(y,A)

27If A were closed, we could do this with ε = 0; and obtain d(x, x′) = d(x,A), d(y, y′) =
d(y,A). You should first think of this particular case. That is how I came up with the
solution.
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≤ d(x, y′)− d(y,A) . . . as d(x,A) ≤ d(x, y′)
≤ d(x, y′)− d(y, y′) + ε . . . from (25)
≤ d(x, y) + ε . . . from the triangle inequality.

Since ε > 0 is otherwise arbitrary, it follows that

f(x)− f(y) ≤ d(x, y).

Similarly,
f(y)− f(x) ≤ d(x, y).

Hence
|f(x)− f(y)| ≤ d(x, y).

Thus f is Lipschitz with Lipschitz constant 1.

Problem 9.3 1[ NOTE: (i) A need not be bounded

(ii) We are intending the standard metric in Rn; otherwise the result
is false. For example, let A = [0, 1] × [0, 1] ⊂ R2 Let x = (2, 0). Then
d∞(x,A) = 1; and d∞(x, y) = 1 for any y ∈ L!!]

We know x has at best one nearest point in A.

Suppose
d(x,A) = λ

d(x, y′) = (d(x, y′′) = λ ;

where y′ ∈ A, y′′ ∈ A, y′ 6∈ y′′.
Let y = 1

2y
′ + 1

2y
′′ ∈ A as A is convex.

Suppose a 6= b are real numbers.

Then
(a+ b)2 < 2a2 + 2b2 (and “ = ” if a = b)

(since 2a2 + 2b2 − (a+ b)2 = a2 + b2 − 2ab = (a− b)2 > 0)

Replacing a by a/2 and b by b/2, we get(
a

2
+
b

2

)2

<
a

2

2
+
b

2

2

if a 6= b, and “=” is a = b. Now

d(x, y) =
∑n

i=1(xi − yi)2

=
∑n

i=1

(
xi−y′i

2 + xi−y′′i
2

)2

<
∑n

i=1

[
(xi−y′i)2

2 + (xi−y′′i )2

2

]
since for at leastone i we havey′i 6= y′′i , and hence xi − y′i 6= xi − y′′i . Hence

d(x, y) < 1
2
∑n

i=1(xi − y′i)2 + 1
2
∑n

i=1(xi − y′′i )2

= 1
2λ+ 1

2λ = λ
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Thus d(x, y) < λ, contradiction.

2. Suppose the original sequence does not converge to x. Then for some
ε > 0, it is not true that there exists an N for which

d(xn, x) < ε if n ≥ N

Hence we can find a subsequence (xn′) such that d(xn′ , x) ≥ ε for all n′

(why???)

But this subsequence does not contain a further subsequence which
converges to x. Hence the original sequence does converge to x.

Problem 9.4 1. Suppose S is a closed subset of a compact set X.

Let (xn) be any sequence from S. Since (xn) ⊂ X, there exists a
subsequence with a limit in X.

Since S is closed, this limit must be in S. Hence S is compact.

2. (a) First note that if C is a compact subset of a metric space (X, d),
then C is closed in X. To see this, suppose C is not closed. Then ∃
a sequence (xn) ⊂ C so that

xn → x 6∈ C

But any subsequence must then also converge to x, which contradicts
the compactness (Definition 9.3.1) of C. Hence C is closed.

Now let {Sλ}λ∈Λ be a collection of compact sets. Let

S =
⋂
λ∈Λ

Sλ .

Then S is closed, being an intersection of closed sets. Since S ⊂ Sλ0

(some fixed λ0 ∈ Λ) and since Sλ0
is compact, it follows now from (1)

that S is also compact.

(b) Let S = S1 ∪ . . . ∪ SN where the Si are compact. Let (xn) be
any sequence from S. Then at least one of the Si must contain an
(infinite) subsequence of (xn).

Since Si is compact, there must be a further subsequence (of this
subsequence) which has a limit in Si (and hence in S). This implies
S is compact.

∞⋃
n=1

[n, n+ 1] = [1,∞)

Remarks.

(1) Do not try to prove 9.4.2(a) by saying that any sequence (xn) ⊂
S is also a sequence in each Sλ (correct) and saying hence there was a
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subsequence with a limit in each Sλ , as Sλ was compact. The problem
here is that different Sλ may give different subsequences, and hence different
limits.

(2) It is incorrect to let the collection of compact sets be {S1, S2, S3., . . .}.
This assumes the collection is countable.

Problem 9.5 1. Straightforward.

2. Consider the sequence

x1 = (1, 0, 0, . . .)

x2 = (1, 1
2 , 0, 0, . . .)

xn = (1, 1
2 , . . . ,

1
n
, 0, 0, . . .)

Then d(xm, xn) = 1
n+1 if m > n. Hence (xn) is Cauchy. But (xn) has

no limit in X.

[Informally, the limit is (1, 1
2 ,

1
3 . . .) 6∈ X. But this is not really a rigor-

ous argument since we have no definition of convergence to elements
not in X.

This argument can be made rigorous by extending X to a larger
metric space, but it is probably easier to justify the above as follows.]

Take any x ∈ X and let

x = (a1, . . . , aN , 0, 0, . . .).

Then d(x, xn) ≥ 1
N+1 for any n ≥ N . Hence xn 6→ x. Since x ∈ X

was arbitrary, this means (xn) does not converge (in X). HENCE X
is not complete.

3. Let S be the set consisting of all sequences of the form

xn = (0, . . . , 0, 1, 0, 0, . . .)

where xn has 1 in the n-th position. Then S is bounded since d(x,Q) =
1, where Q is the sequence of all zeros.

S is closed since the distance between any 2 members of S is 1. Thus
S has no limit points (i.e. all its points are isolated) - and so S is
closed.

S is not compact, since the sequence

x1, x2, x3, x4, . . .

has no convergent subsequence (reason: the distance between any 2
members of the given sequence is 1, and the same must also be true
for any subsequence).
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10 Limits of Functions

Problem 10.1 (1) We have

0 ≤ x4

x2 + y2 = x2 x2

x2 + y2

≤ x2

→ 0

as x→ 0. Similarly
y4

x2 + y2 → 0

as y → 0. Hence
x4 + y4

x2 + y2 → 0

as (x, y)→ (0, 0).

NOTE: The point is that x4 is fourth order and so for small x is much
less than x2, and hence much less than x2 + y2.

(2) On the line y = x, the function equals x3/(x2 + x4), and so ap-
proaches 0 as (x, y)→ (0, 0).

On the curve y =
√
x, the function equals x2/(2x2), and so approaches

1/2 as (x, y)→ (0, 0).

Hence the limit as (x, y)→ (0, 0) does not exist.

(3)

From the diagram we expect the limit to be 1.

To prove this note

|x− x1| ≤ |x− x2|+ |x2 − x1|,

and so
|x− x1|
|x− x2|

≤ 1 +
|x2 − x1|
|x− x2|

. (26)

Note that the right side approaches 1 as |x| → ∞.28

28Since |x− x2| ≥ |x| − |x2| → ∞.
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Similarly,
|x− x2|
|x− x1|

≤ 1 +
|x1 − x2|
|x− x1|

,

and so
|x− x1|
|x− x2|

≥ 1
1 + |x1−x2|

|x−x1|
. (27)

The right side again approaches 1

It now follows from (26), (27) and the Comparison Theorem that the
required limit is 1.

Problem 10.2 (i)

lim
(x,y)→(0,0)

(x,y)∈S1

f(x, y) = lim
x→0

ax3

x4 + a2x2

= lim
x→0

ax

x2 + a2

= 0 evenif a = 0

(ii)

lim
(x,y)→(0,0)

(x,y)∈S2

f(x, y) = lim
x→0

ax4

x4 + a2x4

= lim
x→0

a

1 + a2

=
a

1 + a2

(iii)

lim
(x,y)→(0,0)

(x,y)∈S3

f(x, y) = lim
x→0

y4

y6 + y2

= lim
x→0

y2x

y4 + 1
= 0

(iv) Thus lim
(x,y)→(0,0)

does not exist, since if it did, the various limits in (i) –

(iii) would be the same.

(v) lim
y→0

f(x, y) = 0 is clear – just fix X and take usual limit. Thus

lim
x→0

(lim
y→0

f(x, y)) = 0

(vi) SImilarly,
lim
y→0

(lim
x→0

f(x, y)) = 0
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Problem 10.3 (a) To see that f is not bounded on any open ball centred
at (0, 0), set y = x3, so that

f(x, y) =
x5

x6 + x6 =
1
x

which is clearly unbounded as (x, y)→ (0, 0).

(b) The restriction of f to any straight line L ⊂ R2 which does not pass
through the origin is continuous on L – the function os just the ratio of two
continuous functions for which the denominator does not vanish.

If L does pass through the origin, then y = λx on L, for some λ ∈ R.
Thus on L,

f(x, λx) =


λx3

x6+λ2x2 = (x, y) 6= (0, 0)

0 = (x, y) = (0, 0)

This function is in fact continuous everywhere.
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11 Continuity

Problem 11.1 1. Let f(x) = x3 − x. Then f is continuous and so
f−1[0,∞) is closed. That is {x : x3 − x ≥ 0} is closed. Since [−2, 2] is
closed, the given set is thus closed as it is the intersection of two closed
sets.

2. Let f :Rn → R be given by f(x) = |x|−x·y0. Then f is continuous,
since we can write

f(x) = f(x1, . . . , xn)

=
√

(x1)2 + · · ·+ (xn)2 −
(
x1 · y1

0 + · · ·xn · yn0
)
.

Hence
f−1[0,∞) = {x : x · y0 ≤ |x|}

is closed.

Problem 11.2 1.

Let g(x) = f(x)− x for x ∈ [−1, 1]. Then g(−1) = f(−1) + 1 ≥ 0 since
f(−1) ≥ −1. Similarly g(1) ≤ 0. Since g is continuous, it follows from the
Intermediate Value Theorem that g(x) = 0 for some x ∈ [−1, 1]. That is,
f(x) = x for some x ∈ [−1, 1].

2. Let fk = (1− 1/k)f . Then fk has Lipschitz constant 1− 1/k, and
so has a fixed point xk, say.

By compactness, on passing to a subsequence we have xk′ → x, say, as
k′ → ∞.

Now xk′ = fk′(xk′) and xk′ → x. Thus if we can show fk′(xk′) → f(x),
it follows f(x) = x and so x is a fixed point of f . But∣∣∣f(x)− fk′(xk′)

∣∣∣ =
∣∣∣f(x)− f(xk′) +

1
k′
f(xk′)

∣∣∣
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≤
∣∣∣f(x)− f(xk′)

∣∣∣+ ∣∣∣ 1
k′
f(xk′)

∣∣∣
→ 0

as k′ → ∞ (using the continuity and boundedness of f). Hence fk′(xk′)→
f(x) as k′ → ∞, and this completes the proof.

3. Let f be rotation about the origin through any angle π/2, for
example. Since the ray of angle θ is rotated onto the ray of angle θ + π/2,
there are no fixed points of f in the annulus A.

REMARK: We cannot prove the Brouwer Fixed Point Theorem at this
stage, but it can be made plausible as follows.

Suppose there is no fixed point of f where f :D → D and f is continu-
ous. For each x ∈ D define g(x) ∈ ∂D by taking the straight line from x to
f(x) and continuing it to the boundary. Let the corresponding boundary
point be denoted by g(x). Note that this construction is only well-defined
if f(x) 6= x. It is not hard to write out an explicit formula for g(x) and
hence to show that g is continuous.

In other words, assuming that f has no fixed points, it follows that
there exists a continuous map g :D → ∂D. That this is not so is plausible,
since our intuition is that such a continuous map cannot exist.

Problem 11.3 1. Theorem 7.3.4 implies that

xn → x⇒ d(a, xn)→ d(a, x)

i.e.
f(xn)→ f(x)

Hence f is continuous.

2.
|f(x, y)| ≤ |x| all (x, y), (why?)

→ as x→ 0

(and hence as (x, y) → 0 since |x| does not even depend on y) i.e. f
is continuous at (0, 0).
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3. Let

A = {(x, y) : x2 ≤ y3 and sin 2 ≥ 3y}
= {(x, y) : f(x, y) ≤ 0 and g(x, y) ≥ 0}

(wheref(x, y) = x2 − y3 and g(x, y) = sinx− 3y.)

= f−1(−∞, 0] ∪ g−1[0,∞)

Since f and g are continuous, A is thus the intersection of 2 closed
sets, and so is closed.

Problem 11.4 1. If A is the given set then

A = f−1(−∞), 7) ∩ g−1[(−∞, 0) ∪ (0,∞)

where
f(x, y) = x2 − 3xy

g(x, y) = sinx

2. One idea is to give a function f which becomes “steeper and steeper”
as x→∞. For example

f(x) = cosx2 .

Then

f(x) =

 1 x =
√

2nπ

−1 x =
√

(2n+ 1)π

But √
(2n+ 1)π −

√
2nπ =

√
π
(√

2n+ 1−
√

2n
)
→ 0

(why?) as n→∞.

Hence 6 ∃ δ > 0 so that

|x− y| < δ ⇒ |f(x)− f(y)| < 2

Hence f is not uniformly continuous (but it is continuous and bounded)
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3. Since f is continuous on [−a, a], which is a closed bounded interval,
f must be uniformly continuous on [−a, a]. We can also show this
directly:

|f(x)− f(y)| = |x3 − y3|
= |(x− y)(x2 + xy + y2)|
≤ 3a2|x− y| if x, y ∈ [−a, a)

Hence |f(x)− f(y)| < ε if |x− y| < ε/3a2 (and if x, y ∈ [−a, a)) that
is f is uniformly continuous on [−a, a].

To show f is not uniformly continuous on R, we argue as in part 2.

We will find a sequence (xn, yn) such that

|xn − yn| → 0 as n→∞︸ ︷︷ ︸
(a)

and yet
(b)︷ ︸︸ ︷

|f(xn)− f(yn)| = 1

Just choose xn so x3
n = n and yn so y3

n = n+ 1. Then

|f(xn)− f(yn)| = 1

but

|xn − yn| = | 3
√
n+ 1− 3

√
n|

= (n+1)−n
(n+1)2/3+n1/3(n+1)1/3+n2/3

[using a3 − b3 = (a− b)(a2 + ab+ b2)
and so a− b = (a1/3 − b1/3)(a2/3 + a1/3b1/3 + b2/3)]

= 1
(n+1)2/3+n1/3(n+1)1/3+n2/3

→ 0 as n→∞

From (a) and (b) we see (as in part 2) that f is not uniformly con-
tinuous in R.

Problem 11.5 Clearly f(x) = 0 for x ∈ A, f(x) = 1 fpr x ∈?? and
0 < f(x) < 1 otherwise. Moreover, d(x,A) and d(x,B) is continuous as a
function of x, since it is in fact Lipschitz by Problem 9.2.

Thus f us continuous (being the ratio of continuous functions, where
the denominator is 6= 0 as A and B are disjoint closed* sets).

Problem 11.6 Let

(G(f))(x) = c+
∫ x

a
K(t, f(t))dt
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Then t 7→ K(t, f(t)) is continuous; since it is obtained by composition from
the continuous functions f , K and t 7→ t.

(*) If d(x,A) = 0 then x ∈ A (why?) and if d(x,B) = 0 then x ∈ B
(why?)

Hence A ∪B 6= φ, contradiction.

Since the “indefinite integral” of a continuous function is continuous
(last year!), we see G(f) is continuous.

Hence
G : C[a, b]→ C[a, b] (1)

We next compute on C[a, a+ h]

‖G(fa)−G(f2)‖u =
= supx∈[a,a+h] |G(f1))(x)− (G(f2))(x)|
= supx∈[a,a+h] |

∫ x
a K(t, f1(t))dt−

∫ x
a K(t, f2(t))dt|

≤ supx∈[a,a+h]
∫ x
a |K(t, f1(t))−K(t, f2(t))|dt

[since | ∫ ca h| ≤ ∫ ca |h| (last year!)]

≤ ∫ a+h
a M |f1(t)− f2(t)|dt

≤ Mh‖f1 − f2‖

(uniform metric u on C[a, a+ h])

Thus if a+ h ≤ b, i.e. h ≤ b− a and Mh < 1, i.e. h < 1/M we see G is
a contraction map on C[a, a+ h]. That is,

if h < min{b− a, 1/M}, then G is a contraction on C[a, a+ h] (2)

Since G is a contraction map in the complete metric C[a, a+ h], it has
a unique fixed point.

But u is a fixed point of G means exactly the same as saying

u(x) = c+
∫ x

a
K(t, u(t))dt

for all x ∈ [a, a+ h].

Thus we are finished.

Problem 11.7 (1) Let f(x) = g(x) = x ∀x ∈ R.

Why is h(x) = x2 not uniformly continuous?

(2) Assume f and g are both uniformly continuous. Suppose ε > 0.
Choose δ1 > 0 so that

d(x, y) < δ1 ⇒ |f(x)− f(y)| < ε/2
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Choose δ2 > 0 so that

d(x, y) < δ2 ⇒ |g(x)− g(y)| < ε/2

Then
d(x, y) < min{δ1, δ2} ⇒ |(f + g)(x)− (f + g)(y)| < ε

Hence f + g is uniformly continuous.

Problem 11.8 Suppose f , g are continuous, with notation as in the Ques-
tion.

(1) Take any a ∈ X1. Take any ε > 0. First choose δ > 0 so that

g[BX2
δ (a)] ⊂ BX3

ε [f(a)] . . .Theorem 11.1.2(3)

Next choose δ′ > 0 so that

f [BX1
δ′ (a)] ⊂ BX2

δ (a) . . .Theorem 11.1.2(3) again

Hence
g[f [BX1

δ′ (a)]] ⊂ g[BX2
δ (a)]

i.e.
(g ◦ f)[BX1

δ′ (a)] ⊂ g[BX2
δ (a)]

These give
(g ◦ f)[BX1

δ′ (a)] ⊂ BX3
ε [f(a)]

Thus g ◦ f is continuous at (any) a ∈ X1 (Theorem 11.1.2(3) again) and
hence g ◦ f is continuous.

(2) Suppose E ⊂ X3 is open. Hence g−1[E](⊂ X2) is open .......Theorem
11.4.1(2).

Hence f−1[g−1[E]]︸ ︷︷ ︸
(g◦f)−1[E]

(⊂ X3) is open .....Theorem 11.4.1(2)

Hence g ◦ f is continuous (Theorem 11.4.1(2))

Problem 11.9 Suppose (X, d) and (Y, p) are metric spaces and D ⊂ X is
dense.

1. Suppose f : D → Y is uniformly continuous.

If dn(∈ D)→ x ∈ X, define

f(x) = lim f(dn)

(A) We need to check

(i) lim f(dn) exists

[PROOF: by uniform continuity and the fact (dn) is Cauchy, it follows
(f(dn))∞n=1 is Cauchy]
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(ii) If dn(∈ D)→ x and d′n(∈ D)→ x then lim f(dn) = lim f(d′n)

[PROOF: d(dn, d′n)→ 0, and hence (f(dn), f(d′n))→ 0, using once again
the uniform continuity of f ]

(iii) If x ∈ D then f(x) = f(x)

[PROOF: This is just a particular case of (ii) - take one of the approxi-
mating sequences having all terms equal to x.]

(B) We next need to show that f is uniformly continuous. So suppose
ε > 0. Choose δ > 0 so that

d, d′ ∈ D and d(d, d′) < δ ⇒ p(f(d), f(d′)) < ε

Now suppose x, y ∈ X and d(x, y) < δ. Choose

dn1
(∈ D) → x

dn(∈ D) → y

Then
d(dn, d′n)→ d(x, y)(< δ)

by Theorem 7.3.4. Hence

d(dn, d′n) < δ if n ≥ N (say)

Hence
ρ(f(dn), f(d′n)) < ε if n ≥ N

Hence
ρ(f(x), f(y)) < ε . . .by Thm.7.3.4

Hence f is uniformly continuous.
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12 Uniform Convergence of Functions

Problem 12.1 Let fm(x) = xm if x ∈ [0, 1]. Let f(x) = 0 if x ∈ [0, 1) and
let f(1) = 1. Then fm → f pointwise as m→∞.

In Definition 12.1.1 consider ε = 1/2. For each m there exist x such
that

|fm(x)− f(x)| ≥ 1/2.

To see this, just choose x ∈ [0, 1) such that xm ≥ 1/2. Thus it is not the
case that fm → f uniformly.

Problem 12.2 Let

fn(x) =
n∑
k=1

sin kx
k2 .

Then fn(x)→ f(x) for all x (by the definition of f).29

Each fn is continuous, being a finite sum of continuous functions. More-
over,

|f(x)− fn(x)| =

∣∣∣∣∣∣
∑

k>n+1

sin kx
k2

∣∣∣∣∣∣
≤

∑
k>n+1

∣∣∣∣∣sin kxk2

∣∣∣∣∣
≤

∑
k>n+1

∣∣∣∣ 1
k2

∣∣∣∣
→ 0

as n→∞.

Thus fn → f uniformly. Hence f is the uniform limit of continuous
functions, and hence is continuous by Theorem 12.3.1.

Problem 12.3 1. Consider the double sequence

1 1 1 1 . . .
0 1 1 1 . . .
0 0 1 1 . . .
...

...
...

... . . .

Then for each n, amn → 0 as m → ∞. And for each m, amn → 1 as
n → ∞. Hence bn = 0 for all n and cm = 1 for all m. In particular,
limm→∞ cm and limn→∞ bn both exist, but are not equal.

29Note that the series does converge for each x, since each term in the series has absolute
value ≤ 1/k2, and

∑
1/k2 converges. See Problem 8.2.



70 12 UNIFORM CONVERGENCE OF FUNCTIONS

2.(a) Suppose ε > 0. Then there exists M such that

m ≥M ⇒ |amn − bn| < ε ∀n.

Hence, if p,m ≥M , then for all n

|amn − apn| ≤ |amn − bn|+ |bn − apn| < 2ε.

Fixing p and m and letting ρ→∞, it follows

|cm − cp| ≤ 2ε if p,m ≥M.

Hence (cm)∞m=1 is Cauchy.

2.(b) Note that

|bn − c| ≤ |bn − amn|+ |amn − cm|+ |cm − c|. (28)

Suppose ε > 0.

Using uniform convergence, first choose M so

m ≥M ⇒ |bn − amn| < ε/3 (29)

for all n. By increasing M if necessary we can also assume

m ≥M ⇒ |cm − c| < ε/3. (30)

Next use the fact aMn → cM as n→∞ to choose N so that

n ≥ N ⇒ |aMn − cM | < ε/3. (31)

From (28), (29), (30) and (31), it follows that

|bn − c| < ε,

if n ≥ N . Thus bn → c, as required.
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13 First Order Systems of Differential Equa-
tions

Problem 13.1 1. Assume

x(t) = 1 +
∫ t

0
[x(x))2ds . . . t ∈ [0, 1] (1)

Then (by differentiating)

x′(t) = [x(t)]2, x(0) = 1 (2)

Conversely, assuming (2), for t ∈ [0, 1] we get

x(t) = x(0) +
∫ t
o x
′(s)ds

= x(0) +
∫ t
o [x(x)]2ds

i.e. (1) holds.

Summary (1) and (2) are equivalent.

2. Assume 
x′′(t) + x′(t) + y(t) = 0

y′(t) + y(t) + x(t) = 0

x(0) = 1 , x′(0) = 0 , y(0) = 1

Let x1(t) = x(t), x2(t) = x′(t), x3(t) = y(t).

Then 

x1
1(t) = x2(t)

x1
2(t) = −x2(t)− x3(t)

x1
3(t) = −x1(t)− x3(t)

x1(0) = 1, x2(0) = 0, x3(0) = 1

Conversely, assume these latter and let x(t) = x1(t), y(t) = x3(t). Then
we can easily derive the first.

3.
|f(t1)− f(t2)| =

∣∣∣∫ ba (K(s, t1)−K(s, t2))x(s)ds
∣∣∣

≤ ∫ b
a |K(s, t1)−K(s, t2)| |x(s)|ds

Since x(t) is continuous on [a, b], x(s) ≤M (say) for a ≤ s ≤ b.
Suppose ε > 0. Since K is uniformly continuous, there exists δ so that

|(s1, t1)− (s2, t2)| < δ ⇒ |K(s1, t1)−K(s2, t2)| < ε

In particular (for all s)

|t1 − t2| < δ ⇒ |K(s, t1)−K(s, t2)| < ε
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Thus
|t1 − t2| < δ ⇒ |f(t1)− f(t2)| ≤

∫ b

a
εMds = εM(b− a)

Hence f is continuous on [a, b].

4. For x ∈ C[0, 1] define the function Tx by

(Tx)(t) = et +
1
2

∫ 1

0
t cos(ts)x(s)ds

for 0 ≤ t ≤ 1.

Note (i) Clearly (the function) x is a fixed point of T iff

x(t) = et +
1
2

∫ 1

0
t cos(ts)x(s)ds

(ii) If we apply 3 (above) with

K(s, t) =
1
2
t cos(ts)

we see that Tx : C[0, 1].

Thus
T : C[0, 1]→ C[0, 1]

(iii) T is a contraction map in the supnorm (i.e. the uniform norm),
since

|Tx1(t)− Tx2(t)| = 1
2

∣∣∣∫ 1
0 t cos(ts)(x, (s))− x2(s))ds

∣∣∣
≤ 1

2

∫ 1
0 |t cos(ts)| |x1(s)− x2(s)|ds

≤ 1
2 maxs∈[0,1] |x1(s)− x2(s)|

that is, ‖Tx1 − Tx2‖u ≤ 1
2‖x1 − x2‖u, so T is a contraction map (with

contraction ratio 1/2).

Since C[0, 1] is a complete metric space, it follows that T has a unique
fixed point x, say. From (i) it follows that x is a solution of the given
integral equation - and is in fact the unique solution.
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14 Fractals

Problem 14.1 Assume (by way of obtaining a contradiction) that I ⊂ C
where I is a non-empty open interval. Choose x ∈ I.

There are points arbitrarily close to x which do not have a ternary
expansion consisting solely of 0 and 2. To see this, choose y so that its
ternary expansion agrees with that of x for the first N terms (N suitably
large), but so that all remaining terms are 1.

Since y 6∈ C, it follows we can choose points not in C but arbitrarily
close to x. This contradicts the fact I is open. Hence there is no I as
assumed.

Problem 14.2 To show that G(f) is compact, assume (xi, f(xi)) is a se-
quence of points from G(f). By compactness of A, x′i → x ∈ A for some
subsequence (x′i). But then f(x′i)→ f(x), since f is continuous.

Since x′i → x (∈ A) and f(x′i)→ f(x), it follows (x′i, f(x′i))→ (x, f(x)).30

Hence G(f) is compact.

Next assume that fk → f uniformly on A. Assume ε > 0. Then there
exists N such that |f(x)− fk(x)| ≤ ε for all k ≥ N .

Claim: d(G(f), G(fk)) ≤ ε if k ≥ N .

Suppose that (x, f(x)) ∈ G(f). Then

d
(
(x, f(x)), G(fk)

)
≤ d

(
(x, f(x)), (x, fk(x))

)
= |f(x)− fk(x)| ≤ ε.

Since (x, f(x)) is an arbitrary point in G(f), it follows that

G(f) ⊂
(
G(fk)

)
ε
.

Similarly, (
G(fk)

)
ε
⊂ G(f).

This proves the claim.

From the claim, we immediately have that

G(fk)→ G(f)

in the Hausdorff metric sense.

30This uses the fact that a sequence of n-tuples (n + 1-tuples) converges to a point iff
the associated sequences of components converge to the corresponding components of the
point.
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15 Compactness

Problem 15.1 Let S ⊂ X, (X, d) a metric space. Suppose that S is totally
bounded. Given ε > 0, there exist x1, . . . , xn ∈ S such that for any y ∈ S,
d(y, xj) < ε/2 for some 1 ≤ j ≤ n. But if z ∈ S then there is y ∈ S,
d(z, y) < ε/2, and so d(z, xj) < ε for some 1 ≤ j ≤ n. But this says exactly
that S is totally bounded.

Since any subset of a totally bounded set is totally bounded, the converse
is clear.

Problem 15.2 Since fy(x) = f(x, y), the set F is equicontinuous iff for
any ε > 0 there is δ > 0 such that for any y ∈ [0, 1],

|x1 − x2| < δ ⇒ |f(x1, y)− f(x2, y)| < ε .

But this is immediate from the uniform continuity of f , which holds because
f is continuous on a compact set.

Problem 15.3 1. Two examples are f1(x) = sin( 1
x
) and f2(x) = 1

x
.

Neither has a limit at x = 0, but for different reasons.

2. Uniqueness Suppose that g1, g2 :A→ R are continuous and both agree
with f on A. The subset of A on which they agree is a closed subset
of A containing A, and so must be all of A.

Existence For x ∈ A\A, let (xn) ⊂ A, xn → x. Then (xn) is Cauchy,
whence so is f(xn). Define

g(x) = lim
n
f(xn) .

Essentially the same argument shows firstly that g is in fact well
defined, and is continuous at every point of A\A, and hence on A
since it agrees with f on A. (In fact g will be uniformly continuous.)

3. Suppose X,Y are metric spaces, A ⊂ X and f :A → Y is uniformly
continuous. Suppose further that Y is complete. Then f extends
uniquely to a (uniformly) continuous function g :A → Y . The proof
is identical to the above.


